Subscribe free to our newsletters via your
. 24/7 Space News .




SOLAR DAILY
A new dimension for solar energy
by David L. Chandler for MIT News
Boston MA (SPX) Mar 28, 2012


Solar cells are normally installed flat on a rooftop or other surface. MIT researchers are looking at other configurations.

Intensive research around the world has focused on improving the performance of solar photovoltaic cells and bringing down their cost. But very little attention has been paid to the best ways of arranging those cells, which are typically placed flat on a rooftop or other surface, or sometimes attached to motorized structures that keep the cells pointed toward the sun as it crosses the sky.

Now, a team of MIT researchers has come up with a very different approach: building cubes or towers that extend the solar cells upward in three-dimensional configurations. Amazingly, the results from the structures they've tested show power output ranging from double to more than 20 times that of fixed flat panels with the same base area.

The biggest boosts in power were seen in the situations where improvements are most needed: in locations far from the equator, in winter months and on cloudier days. The new findings, based on both computer modeling and outdoor testing of real modules, have been published in the journal Energy and Environmental Science.

"I think this concept could become an important part of the future of photovoltaics," says the paper's senior author, Jeffrey Grossman, the Carl Richard Soderberg Career Development Associate Professor of Power Engineering at MIT.

The MIT team initially used a computer algorithm to explore an enormous variety of possible configurations, and developed analytic software that can test any given configuration under a whole range of latitudes, seasons and weather. Then, to confirm their model's predictions, they built and tested three different arrangements of solar cells on the roof of an MIT laboratory building for several weeks.

While the cost of a given amount of energy generated by such 3-D modules exceeds that of ordinary flat panels, the expense is partially balanced by a much higher energy output for a given footprint, as well as much more uniform power output over the course of a day, over the seasons of the year, and in the face of blockage from clouds or shadows.

These improvements make power output more predictable and uniform, which could make integration with the power grid easier than with conventional systems, the authors say.

The basic physical reason for the improvement in power output - and for the more uniform output over time - is that the 3-D structures' vertical surfaces can collect much more sunlight during mornings, evenings and winters, when the sun is closer to the horizon, says co-author Marco Bernardi, a graduate student in MIT's Department of Materials Science and Engineering (DMSE).

The time is ripe for such an innovation, Grossman adds, because solar cells have become less expensive than accompanying support structures, wiring and installation. As the cost of the cells themselves continues to decline more quickly than these other costs, they say, the advantages of 3-D systems will grow accordingly.

"Even 10 years ago, this idea wouldn't have been economically justified because the modules cost so much," Grossman says. But now, he adds, "the cost for silicon cells is a fraction of the total cost, a trend that will continue downward in the near future." Currently, up to 65 percent of the cost of photovoltaic (PV) energy is associated with installation, permission for use of land and other components besides the cells themselves.

Although computer modeling by Grossman and his colleagues showed that the biggest advantage would come from complex shapes - such as a cube where each face is dimpled inward - these would be difficult to manufacture, says co-author Nicola Ferralis, a research scientist in DMSE. The algorithms can also be used to optimize and simplify shapes with little loss of energy.

It turns out the difference in power output between such optimized shapes and a simpler cube is only about 10 to 15 percent - a difference that is dwarfed by the greatly improved performance of 3-D shapes in general, he says. The team analyzed both simpler cubic and more complex accordion-like shapes in their rooftop experimental tests.

At first, the researchers were distressed when almost two weeks went by without a clear, sunny day for their tests. But then, looking at the data, they realized they had learned important lessons from the cloudy days, which showed a huge improvement in power output over conventional flat panels.

For an accordion-like tower - the tallest structure the team tested - the idea was to simulate a tower that "you could ship flat, and then could unfold at the site," Grossman says. Such a tower could be installed in a parking lot to provide a charging station for electric vehicles, he says.

So far, the team has modeled individual 3-D modules. A next step is to study a collection of such towers, accounting for the shadows that one tower would cast on others at different times of day. In general, 3-D shapes could have a big advantage in any location where space is limited, such as flat-rooftop installations or in urban environments, they say. Such shapes could also be used in larger-scale applications, such as solar farms, once shading effects between towers are carefully minimized.

A few other efforts - including even a middle-school science-fair project last year - have attempted 3-D arrangements of solar cells. But, Grossman says, "our study is different in nature, since it is the first to approach the problem with a systematic and predictive analysis."

.


Related Links
Massachusetts Institute of Technology
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR DAILY
Brown liquor and solar cells to provide sustainable electricity
Linkoping, Sweden (SPX) Mar 26, 2012
A breakthrough for inexpensive electricity from solar cells, and a massive investment in wind power, will mean a need to store energy in an intelligent way. According to research at Linkoping University, published in Science, batteries of biological waste products from pulp mills could provide the solution. Organic solar cells based on conductive plastic is a low cost alternative that has ... read more


SOLAR DAILY
NASA's Grail MoonKam Returns First Student-Selected Lunar Images

Ecliptic "MoonKAM" Systems Begin Operations in Lunar Orbit

Two New NASA LRO Videos: See Moon's Evolution, Take a Tour

China to get lunar soil

SOLAR DAILY
A glow in the Martian night throws light on atmospheric circulation

Mars Science Laboratory Adjusts Orbital Path And Tests Instruments

Geologists discover new class of landform - on Mars

Red Food For the Red Planet

SOLAR DAILY
ICAP Ocean Tomo Auctions NASA Software Patent Portfolios

Not your average heat shield

NASA Seeks Space Launch System Advanced Development Solutions

Patent requests in Europe reach record in 2011

SOLAR DAILY
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

SOLAR DAILY
Beaming Success for ISS Fans

ESA Cargo Ship Carries Research and Technology Investigations to ISS

Japan Shares ISS SMILES via Atmospheric Data Distribution

ATV Edoardo Amaldi set for liftoff

SOLAR DAILY
ILS Proton Launches Intelsat 22

US ramping up private sector's role in spaceflight

Europe's smart supply ship on its way to Space Station

Third Ariane 5 ready for launch in 2012

SOLAR DAILY
Runaway Planets Zoom at a Fraction of Light-Speed

Some orbits more popular than others in solar systems

Herschel's new view on giant planet formation

Kepler Statistical Analysis Suggests Earthlike Planets Extremely Rare

SOLAR DAILY
Magnetic field researchers target 100-tesla goal

AMPAC-ISP Hydrazine Propulsion Module Completes Pre-Ship Review

Apple offers to refund Australian iPad customers

Soviet Weather Satellite Falls in Antarctica




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement