. 24/7 Space News .
CARBON WORLDS
A key to climate stabilization could be buried deep in the mud
by Staff Writers
Tallahassee FL (SPX) Sep 25, 2018

file image

Earth's peatland soils store a lot of carbon - about as much as currently flows freely through the atmosphere as carbon dioxide. As global temperatures rise, scientists worry that the planet's grip on these carbon reservoirs could weaken, unleashing a "carbon bomb" that could further destabilize Earth's climate systems.

But a new study led by Florida State University offers some hope that Earth's carbon reservoirs might not be quite as vulnerable as experts predict. In a global survey of peatlands - areas defined by soil-like, partially decomposed organic matter - researchers found signs that these carbon-rich environments could show some level of long-term resilience even as temperatures continue to climb.

"There's a lot of concern about losing these carbon reservoirs, but what this study suggests is that they are more stable than we initially thought," said Jeff Chanton, the Robert O. Lawton Distinguished Professor of Oceanography. "This mutes the carbon bomb hypothesis. It's good news."

The findings were published in the journal Nature Communications.

Peat forms most frequently in the North, where cooler climes prevent organic matter from fully decomposing. But peatlands can also be found in the tropics, where warm weather facilitates rapid decomposition.

This puzzled a team of researchers from FSU's Departments of Chemistry and Biochemistry and Earth, Ocean and Atmospheric Science. If tropical peatlands can successfully withstand equatorial temperatures, they asked, might northern peatlands also have the capacity to stabilize in warmer conditions?

To investigate, the team collected peat samples from a globally representative selection of far-flung sites - subarctic Swedish mires, temperate North Carolina bogs and tropical Bornean peat swamps to name a few. They then used advanced spectroscopy tools to investigate the unique chemical profiles of their samples.

The team quickly identified significant chemical differences between peat sourced from higher and lower latitudes.

"Peat from warm climates had lower concentrations of carbohydrates and higher concentrations of aromatics compared to peat from colder climates," said former FSU postdoctoral researcher Suzanne Hodgkins, who led the study.

Cold-climate peat, with its higher carbohydrate concentration, is considered by scientists to be more labile, or more easily degradable. As temperatures increase, the carbohydrates in the peat decompose and carbon dioxide is emitted.

Warm-climate peat sampled from lower latitudes, on the other hand, was found to be largely depleted of carbohydrates. Instead, these samples contained high levels of aromatics - stable chemical compounds left behind by decomposed plant matter.

As temperatures rise at higher latitudes, northern peatlands will burn off their surface store of carbohydrates, releasing carbon dioxide into the atmosphere. The key to what happens next lies in the chemistry of the peat buried deep below the Earth, said Hodgkins, now a postdoctoral researcher at Ohio State University.

"The long-term stability of northern peat in the face of warming depends on whether it can develop a chemistry similar to tropical peats," she said "Initially, northern peat will likely decompose and release carbon into the atmosphere, but eventually this decomposition will reduce the abundance of carbohydrates relative to aromatics. This change in chemistry could stabilize the remaining peat against further decomposition."

If, after the initial carbohydrate burn, northern peatlands come to more closely resemble their southern counterparts - which have endured in warm weather for millennia - then their aromatic-dominant chemistry could act as a bulwark against further decomposition and carbon dioxide release.

"Evidence from the study suggests that northern peatlands may develop many of the same compositional features as southern peatlands, mitigating to some extent the potential for substantial carbon losses to the atmosphere," said retired Professor of Analytical and Environmental Chemistry Bill Cooper, who helped direct the study.

This mitigation is contingent on the rate of carbohydrate decomposition and the ways northern plant ecology adapts to warmer temperatures, but it could play a major role in preventing considerable amounts of carbon dioxide from reaching an already-warming atmosphere.

However, while stable peatlands may help avert worst-case scenarios and temper the dreaded carbon bomb, researchers said these kind of ecological restraints on warming are not enough to reverse global climate trends.

"All of these natural processes pale in comparison to the rate at which human beings are releasing fossil fuel CO2 into the atmosphere," Chanton said. "We're releasing CO2 at enormous rates, so this is not going to save us."

Research paper


Related Links
Florida State University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Peatland carbon sinks at risk
Brisbane, Australia (SPX) Sep 14, 2018
Peatlands are extremely effective at storing carbon, but an international study featuring a University of Queensland researcher has found climate change could stop that. The group investigated how peatlands - swamps and bogs with organic rich soils - have responded to climate variability between 850 BCE and 1850 CE. Associate Professor Patrick Moss, from UQ's School of Earth and Environmental Sciences, believes the research is critical in understanding how climate affects the absorption prop ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Orion's first Service Module integration complete

NASA Will Pay Anyone $15,700 to Stay in Bed for 70 Days

Yusaku Maezawa: Japanese spaceman with a taste for art

Fly me to the Moon? A look at the space-tourism race

CARBON WORLDS
Roscosmos Finds No Flaw in Fabric of Soyuz Vehicle at Assembly Stage - Source

100th Ariane 5 will carry Horizons 3e and Azerspace-2 Intelsat 38

SpaceX Open to Deploying Orbital Weapons for US

Scientists to study new propulsion idea for spacecraft

CARBON WORLDS
Recent tectonics on Mars

ExoMars orbiter highlights radiation risk for Mars astronauts

Attempting Contact With Opportunity Multiple Times A Day

River basin provides evidence of ancient ocean on Mars

CARBON WORLDS
China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

CARBON WORLDS
CPI Antenna Systems Integrates New Large-Aperture Satellite Earth Stations into Its Product Line

Creating Dynamism in Indian Space Ecosystem

GMV primes the biggest contract ever signed by Spain's space industry

Making space exploration real on Earth

CARBON WORLDS
UTA researcher creates hydrogels capable of complex movement

Scientists develop new way to prevent spacecraft errors

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry

World's first passive anti-frosting surface fights ice with ice

CARBON WORLDS
The spark that created life

Planet Vulcan Found

When is a star not a star?

TESS Shares First Science Image in Hunt to Find New Worlds

CARBON WORLDS
Juno image showcases Jupiter's brown barge

New research suggest Pluto should be reclassified as a planet

Tally Ho Ultima

New Horizons makes first detection of Kuiper Belt flyby target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.