. 24/7 Space News .
CARBON WORLDS
A diamond as the steppingstone to new materials, using plasma physics technology
by Staff Writers
Birmingham UK (SPX) Dec 14, 2017


illustration only

University of Alabama at Birmingham physicists have taken the first step in a five-year effort to create novel compounds that surpass diamonds in heat resistance and nearly rival them in hardness.

They are supported by a five-year, $20 million National Science Foundation award to create new materials and improve technologies using the fourth state of matter - plasma.

Plasma - unlike the other three states of matter, solid, liquid and gas - does not exist naturally on Earth. This ionized gaseous substance can be made by heating neutral gases. In the lab, Yogesh Vohra, a professor and university scholar in the UAB Department of Physics, uses plasma to create thin diamonds film. Such films have many potential uses, such as coatings to make artificial joints long-lasting or to maintain the sharpness of cutting tools, developing sensors for extreme environments or creating new super-hard materials.

To make a diamond film, Vohra and colleagues stream a mix of gases into a vacuum chamber, heating them with microwaves to create plasma. The low pressure in the chamber is equivalent to the atmosphere 14 miles above the Earth's surface. After four hours, the vapor has deposited a thin diamond film on its target.

In a paper in the journal Materials, Vohra and colleagues in the UAB College of Arts and Sciences investigated how the addition of boron, while making a diamond film, changed properties of the diamond material.

It was already known that, if the gases are a mix of methane and hydrogen, the researchers get a microcrystalline diamond film made up of many tiny diamond crystals that average about 800 nanometers in size. If nitrogen is added to that gas mixture, the researchers get nanostructured diamond, made up of extremely tiny diamond crystals averaging just 60 nanometers in size.

In the present study, the Vohra team added boron, in the form of diborane, or B2H6, to the hydrogen/methane/nitrogen feed gas and found surprising results. The grain size in the diamond film abruptly increased from the 60-nanometer, nanostructured size seen with the hydrogen/methane/nitrogen feed gas to an 800-nanometer, microcrystalline size. Furthermore, this change occurred with just minute amounts of diborane, only 170 parts per million in the plasma.

Using optical emission spectroscopy and varying the amounts of diborane in the feed gas, Vohra's group found that the diborane decreases the amounts of carbon-nitrogen radicals in the plasma. Thus, Vohra said, "our study has clearly identified the role of carbon-nitrogen species in the synthesis of nanostructured diamond and suppression of carbon-nitrogen species by addition of boron to the plasma."

Since the addition of boron can also change the diamond film from a nonconductor into a semiconductor, the UAB results offer a new control of both diamond film grain size and electrical properties for various applications.

Over the next several years, Vohra and colleagues will probe the use of the microwave plasma chemical vapor deposition process to make thin films of boron carbides, boron nitrides and carbon-boron-nitrogen compounds, looking for compounds that survive heat better than diamonds and also have a diamond-like hardness. In the presence of oxygen, diamonds start to burn at about 1,100 degrees Fahrenheit.

Co-authors with Vohra of the paper, "Morphological transition in diamond thin-films induced by boron in a microwave plasma deposition process," are Paul A. Baker, Ph.D., UAB Department of Physics, and David R. Goodloe, Birmingham Southern College. Goodloe did summer undergraduate research under a NASA program at UAB.

CARBON WORLDS
UCLA chemists synthesize narrow ribbons of graphene using only light and heat
Los Angeles CA (SPX) Dec 18, 2017
Silicon - the shiny, brittle metal commonly used to make semiconductors - is an essential ingredient of modern-day electronics. But as electronic devices have become smaller and smaller, creating tiny silicon components that fit inside them has become more challenging and more expensive. Now, UCLA chemists have developed a new method to produce nanoribbons of graphene, next-generation stru ... read more

Related Links
University of Alabama at Birmingham
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
NASA Establishes Advisory Group for National Space Council

PARC to Partner with Commercial Space Leader to Accelerate Space R and D

'Dragon back' as cargo reaches space station

SpaceX resupply truck Dragon on route to ISS for space research delivery

CARBON WORLDS
In first, SpaceX launches recycled rocket and spaceship

Russian space agency blames satellite loss on programming error

ArianeGroup signs contract with ESA for future Prometheus engine

Rocket Lab makes another attempt at rocket launch in New Zealand

CARBON WORLDS
Planting oxygen ensures a breath of fresh air

Designing future human space exploration on Hawaii's lava fields

Opportunity Comes to a Fork in the Road

Space program should focus on Mars, says editor of New Space

CARBON WORLDS
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

CARBON WORLDS
Green Light for Continued Operations of ESA Science Missions

New business incubators will help space industry grow

mu Space becomes first Thai startup to acquire satellite license

Regulation and compliance for nontraditional space missions

CARBON WORLDS
Physicists excited by discovery of new form of matter, excitonium

Brittle starfish shows how to make tough ceramics

Russia says 'satellite' could have caused radioactive pollution

Army taps Northrop Grumman for new radar risk reduction work

CARBON WORLDS
Life's building blocks observed in spacelike environment

NASA uses AI to uncover eighth planet circling distant star

No alien 'signals' from cigar-shaped asteroid: researchers

Two Super-Earths around red dwarf K2-18

CARBON WORLDS
Does New Horizons' Next Target Have a Moon?

Juno probes the depths of Jupiter's Great Red Spot

New Horizons Corrects Its Course in the Kuiper Belt

Wrapping up 2017 one year out from MU69









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.