Subscribe free to our newsletters via your
. 24/7 Space News .




MARSDAILY
A dark spot on Mars - Syrtis Major
by Staff Writers
Bonn, Germany (SPX) Feb 03, 2012


Topographical image map of an area in the eastern part of Syrtis Major.

Amateur astronomers who on occasion observe Mars through the eyepiece of their telescopes are quite familiar with the region of Syrtis Major; when observing conditions are good, it can be easily identified as a dark spot on Mars.

This large volcanic region just north of Mars' equator covers an area of roughly 1300 by 1500 kilometres - about half the size of Europe. The High Resolution Stereo Camera (HRSC), operated by the German Aerospace Center, on board ESA's Mars Express spacecraft imaged a 90 by 180 kilometre section of Syrtis Major at a resolution of about 19 metres per pixel during orbit 9487 on 8 June 2011.

Syrtis Major was first observed in 1659 by the Dutch mathematician, physicist and astronomer Christiaan Huygens (1629-1695), who was also the first to recognise Saturn's rings.

The pronounced dark colouring of the region allowed Huygens to determine Mars' rotation through the change in position of Syrtis Major in the course of his telescopic observations; he was thus able to, for the first time, estimate the length of the planet's day - and he did so relatively precisely, arriving at a value of 24.5 hours (in fact it is 24 hours and 37 minutes). The name Syrtis Major is derived from the Roman name for the Gulf of Sidra on the coast of Libya.

Earth and Mars soon in opposition
At present, Mars is once again approaching opposition to Earth; on 2 March 2012 the Sun, Earth and Mars will be in a straight line with Earth in the middle. Mars will rise in the east immediately after sunset and stand high in the southern sky at midnight. It is not, however, a very favourable opposition for astronomers because, due to its highly elliptical orbit, Mars will be at its furthest point from the Sun in March.

As a result, the distance between Earth and Mars will be 100.8 million kilometres; during opposition on 28 August 2003 they were only 55.8 million kilometres apart, their closest approach for nearly 60,000 years.

The images shown here were produced by the Department of Planetary Sciences and Remote Sensing at the Institute for Geological Sciences of the Freie Universitat Berlin, using HRSC image data systematically pre-processed by DLR. They show a section of Syrtis Major at 16 degrees north and 73 degrees east. Visible on the general image map are volcanic lava flows that flooded the older highland material, leaving mesas (flat-topped mountains) behind.

These can be easily distinguished from their surroundings due to their lighter colouring. The flow fronts of the individual solidified lava flows resemble lobe-shaped lines with some irregularities; in the anaglyph image they are revealed as subtle height differences.

Low-viscosity lava flooded the old Mars highlands
Some impact craters in the region were partially or completely filled with volcanic material. One large impact crater with a diameter of about 18 kilometres was filled almost to the top by low-viscosity lava; the circular outline is barely visible through the more recent lava cover.

Finally, the landscape was shaped by the force of the wind. Here the prevalent wind direction, at least in the more recent past, from east-southeast can be derived by means of the lighter aeolian deposits to the sides of the smaller impact craters sheltered from the wind.

The largest impact crater in the area shown here has a diameter of about 20 kilometres with a small mountain at its centre. West of this central mountain (above it in the image) is a small, dark field of dunes. In particular, the dunes at the front here nearly mimick the 'perfect shape' of typical sickle-shaped dunes, or barchans, common in deserts on Earth.

Another noticeable feature is that the older impact craters are found in the old highlands (in the upper half of the perpendicular views). In contrast, only smaller impact craters can be found on the younger volcanic surface in the lower half of the image. Dating by means of the crater size-frequency distribution reveals that the surface is of Hesperian age: in Mars' geological history this period, characterised by widespread volcanic activity, corresponds to about 3.7 to 3 billion years ago.

Image processing and the HRSC experiment on Mars Express
The colour images were created from the nadir channel, the field of view of which is aligned perpendicular to the surface of Mars, and the colour channels; the oblique perspective views were generated from HRSC stereo channel data. The anaglyph, which creates a three-dimensional impression of the landscape when viewed with red/blue or red/green glasses, was derived from the nadir channel and one stereo channel.

The black-and-white image is based on data acquired by the nadir channel, which has the highest resolution of all the channels. The colour-coded plan view is based on a digital terrain model of the region, from which the topography of the landscape can be derived.

The HRSC camera experiment on the European Space Agency's Mars Express mission is headed by Principal Investigator (PI) Professor Gerhard Neukum (Freie Universitat Berlin), who was also responsible for the technical design of the camera.

The science team consists of 40 co-investigators from 33 institutions in ten nations. The camera was developed at DLR under the leadership of the PI and it was built in cooperation with industrial partners EADS Astrium, LEWICKI microelectronic GmbH and Jena-Optronik GmbH.

The instrument is operated by the DLR Institute of Planetary Research in Berlin-Adlershof, through ESA/ESOC. The systematic processing of the HRSC image data is carried out at DLR. The images shown here were created by PI-group at the Institute of Geological Sciences of the Freie Universitat Berlin.

.


Related Links
German Aerospace Center
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








MARSDAILY
Russia blames 'cosmic rays' for Mars probe failure
Moscow (AFP) Jan 31, 2012
Russia on Tuesday blamed a computer malfunction caused by the impact of cosmic rays for the failure of its Phobos-Grunt mission to Mars, one of a litany of setbacks for its embattled space programme. Announcing the initial results of the investigation into the Mars mission, Russian space agency Roscosmos also revealed the next manned launch to the International Space Station would be delayed ... read more


MARSDAILY
NASA Mission Returns First Video From Lunar Far Side

A Moon Colony by 2020

U.S. Presidential Hopeful Promises Moon Base by 2020

Moon looms bright over Republican debate

MARSDAILY
U.K. study: Mars surface too dry for life

Radio Doppler Tracking Continues at Cape York

Russia May Repeat Mars-500 Simulation on Space Station

A dark spot on Mars - Syrtis Major

MARSDAILY
NASA Receives Final NRC Report On Space Technology Roadmaps

Final Call to Register and Win Suborbital Research Flight

Northrop Grumman Develops Solar Electric Propulsion Flight Concepts for Future Space Missions

How NASA Solved a 100 Million Dollar Problem for Five Bucks

MARSDAILY
China's satellite navigation sector annual output predicted to reach 35 bln USD in 2015

China plans to launch 21 rockets, 30 satellites this year

Shenzhou 9 Behind the Curtain

China Plans to Launch 30 Satellites in 2012

MARSDAILY
Next manned ISS mission to launch May 15: Russia

Capsule failure delays ISS crew mission

Russia to postpone next manned space launch: official

Russia will replace Soyuz for next ISS mission: source

MARSDAILY
SpaceX flight to ISS could be late March: NASA

Feb 13 set as new date for Europe's Vega rocket

Launch of Proton-M with Dutch Satellite Postponed

First Vega rocket assembled on launch pad

MARSDAILY
Russia to Start Own Search for Extrasolar Planets

Planets Circling Around Twin Suns

Scientists help define structure of exoplanets

Fourth potentially habitable planet is discovered

MARSDAILY
Smart paint could revolutionize structural safety

LockMart MUOS Satellite Encapsulated In Launch Vehicle Payload Fairing

Green light for Malaysia rare earths plant

Space Radiation Blamed for Phobos-Grunt Crash




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement