Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
A battery small enough to be injected, energetic enough to track salmon
by Tom Rickey for PNNL News
Richland WA (SPX) Feb 23, 2014


The microbattery created by Jie Xiao and Daniel Deng and colleagues, amid grains of rice.

Scientists have created a microbattery that packs twice the energy compared to current microbatteries used to monitor the movements of salmon through rivers in the Pacific Northwest and around the world.

The battery, a cylinder just slightly larger than a long grain of rice, is certainly not the world's smallest battery, as engineers have created batteries far tinier than the width of a human hair. But those smaller batteries don't hold enough energy to power acoustic fish tags. The new battery is small enough to be injected into an organism and holds much more energy than similar-sized batteries.

Details of the battery, created by scientists at the Department of Energy's Pacific Northwest National Laboratory, were published online recently in Scientific Reports, a member of the Nature collection of journals. Research about the battery's materials was also featured last year in the Journal of Materials Chemistry A.

For scientists tracking the movements of salmon, the lighter battery translates to a smaller transmitter which can be inserted into younger, smaller fish. That would allow scientists to track their welfare earlier in the life cycle, oftentimes in the small streams that are crucial to their beginnings. The new battery also can power signals over longer distances, allowing researchers to track fish further from shore or from dams, or deeper in the water.

"The invention of this battery essentially revolutionizes the biotelemetry world and opens up the study of earlier life stages of salmon in ways that have not been possible before," said M. Brad Eppard, a fisheries biologist with the Portland District of the U.S. Army Corps of Engineers.

"For years the chief limiting factor to creating a smaller transmitter has been the battery size. That hurdle has now been overcome," added Eppard, who manages the Portland District's fisheries research program.

The Corps and other agencies use the information from tags to chart the welfare of endangered fish and to help determine the optimal manner to operate dams. Three years ago the Corps turned to Z. Daniel Deng, a PNNL engineer, to create a smaller transmitter, one small enough to be injected, instead of surgically implanted, into fish. Injection is much less invasive and stressful for the fish, and it's a faster and less costly process.

"This was a major challenge which really consumed us these last three years," said Deng. "There's nothing like this available commercially, that can be injected. Either the batteries are too big, or they don't last long enough to be useful. That's why we had to design our own."

Deng turned to materials science expert Jie Xiao to create the new battery design.

To pack more energy into a small area, Xiao's team improved upon the "jellyroll" technique commonly used to make larger household cylindrical batteries. Xiao's team laid down layers of the battery materials one on top of the other in a process known as lamination, then rolled them up together, similar to how a jellyroll is created. The layers include a separating material sandwiched by a cathode made of carbon fluoride and an anode made of lithium.

The technique allowed her team to increase the area of the electrodes without increasing their thickness or the overall size of the battery. The increased area addresses one of the chief problems when making such a small battery - keeping the impedance, which is a lot like resistance, from getting too high.

High impedance occurs when so many electrons are packed into a small place that they don't flow easily or quickly along the routes required in a battery, instead getting in each other's way. The smaller the battery, the bigger the problem.

Using the jellyroll technique allowed Xiao's team to create a larger area for the electrons to interact, reducing impedance so much that the capacity of the material is about double that of traditional microbatteries used in acoustic fish tags.

"It's a bit like flattening wads of Play-Doh, one layer at a time, and then rolling them up together, like a jelly roll," says Xiao. "This allows you to pack more of your active materials into a small space without increasing the resistance."

The new battery is a little more than half the weight of batteries currently used in acoustic fish tags - just 70 milligrams, compared to about 135 milligrams - and measures six millimeters long by three millimeters wide. The battery has an energy density of about 240 watt hours per kilogram, compared to around 100 for commercially available silver oxide button microbatteries.

The battery holds enough energy to send out an acoustic signal strong enough to be useful for fish-tracking studies even in noisy environments such as near large dams. The battery can power a 744-microsecond signal sent every three seconds for about three weeks, or about every five seconds for a month. It's the smallest battery the researchers know of with enough energy capacity to maintain that level of signaling.

The batteries also work better in cold water where salmon often live, sending clearer signals at low temperatures compared to current batteries.

That's because their active ingredients are lithium and carbon fluoride, a chemistry that is promising for other applications but has not been common for microbatteries.

Last summer in Xiao's laboratory, scientists Samuel Cartmell and Terence Lozano made by hand more than 1,000 of the rice-sized batteries. It's a painstaking process, cutting and forming tiny snippets of sophisticated materials, putting them through a flattening device that resembles a pasta maker, binding them together, and rolling them by hand into tiny capsules. Their skilled hands rival those of surgeons, working not with tissue but with sensitive electronic materials.

A PNNL team led by Deng surgically implanted 700 of the tags into salmon in a field trial in the Snake River last summer. Preliminary results show that the tags performed extremely well.

The results of that study and more details about the smaller, enhanced fish tags equipped with the new microbattery will come out in a forthcoming publication. Battelle, which operates PNNL, has applied for a patent on the technology.

In addition to Xiao, Deng, Cartmell and Lozano, other authors of the paper include Honghao Chen, Qiang Wang, Huidong Xi, Xilin Chen, Yong Yuan, Mark Gross, and Thomas Carlson. Honghao Chen, Samuel Cartmell, Qiang Wang, Terence Lozano, Z. Daniel Deng, Huidong Li, Xilin Chen, Yong Yuan, Mark E. Gross, Thomas J. Carlson and Jie Xiao, Micro-battery development for juvenile salmon acoustic telemetry system applications, Scientific Reports, Jan. 21, 2014, DOI: 10.1038/SREP03790.

.


Related Links
Pacific Northwest National Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
New 'pomegranate-inspired' design solves problems for lithium-ion batteries
Menlo Park CA (SPX) Feb 19, 2014
An electrode designed like a pomegranate - with silicon nanoparticles clustered like seeds in a tough carbon rind - overcomes several remaining obstacles to using silicon for a new generation of lithium-ion batteries, say its inventors at Stanford University and the Department of Energy's SLAC National Accelerator Laboratory. "While a couple of challenges remain, this design brings us clos ... read more


ENERGY TECH
Japan's Pocari Sweat bound for the moon: maker

Lunar ownership laws: a future necessity?

Chang'e-2 lunar probe travels 70 mln km

LADEE Sends Its First Images of the Moon Back to Earth

ENERGY TECH
NASA Mars Orbiter Views Opportunity Rover on Ridge

Curiosity Adds Reverse Driving for Wheel Protection

Curiosity Drives On After Crossing Martian Dune

The World Above and Beyond

ENERGY TECH
Orion Underway Recovery Testing Begins off the Coast of California

Inside astronaut Alexander's head

NASA Welcomes University Participants to Develop Science Payloads

Boeing Commercial Crew Program Passes NASA Hardware, Software Reviews

ENERGY TECH
No Call for Yutu

What's up, Yutu

China's Jade Rabbit rover comes 'back to life'

Yutu Awakes

ENERGY TECH
NASA, International Space Station Partners Announce Future Crew Members

Andrews Space Cargo Module Power Unit Provides Power For Payloads Bound For ISS

Russian Progress M-22M docks with ISS following fast rendezvous

Russian Resupply Spacecraft Begins Expedited Flight to Station

ENERGY TECH
Arianespace to launch OPTSAT 3000 and VENuS satellites

Lighter engines a headache for satellite launcher Ariane

New Russian Rocket Mock-Up Rolls Out to Launch Pad

ILS Proton Successfully Launches TURKSAT-4A for Turksat

ENERGY TECH
ESA selects planet-hunting PLATO mission

Rife with hype, exoplanet study needs patience and refinement

Scientist: Exoplanet research needs less hype, more patience

Europe sets plans for 2024 planet-hunting mission

ENERGY TECH
How to catch a satellite

Using Holograms to Improve Electronic Devices

Google shows prototype phone that creates 3-D maps of its surroundings

An essential step toward printing living tissues




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.