Subscribe free to our newsletters via your
. 24/7 Space News .




PHYSICS NEWS
A Simple View Of Gravity Does Not Fully Explain The Distribution Of Stars In Crowded Clusters
by Staff Writers
San Francisco CA (SPX) Feb 21, 2013


Hubble Space Telescope image of the young star cluster NGC 1818 in the Large Magellanic Cloud. KIAA researchers found to their surprise an increasing fraction of binary systems as they looked at increasingly larger distances from the cluster center, as illustrated graphically in the inset. (Credit: Peking University).

Gravity remains the dominant force on large astronomical scales, but when it comes to stars in young star clusters the dynamics in these crowded environments cannot be simply explained by the pull of gravity.

After analyzing Hubble Space Telescope images of star cluster NGC 1818 in the Large Magellanic Cloud, a satellite galaxy of the Milky Way, researchers at the Kavli Institute for Astronomy and Astrophysics (KIAA) at Peking University in Beijing found more binary star systems toward the periphery of cluster than in the center - the opposite of what they expected. The surprising distribution of binaries is thought to result from complex interactions among stars within young clusters.

In the dynamic environment of a star cluster, high-mass stars are thought to gravitate toward the center of a cluster when they give a 'kick' to lower-mass stars and lose energy, explained KIAA Prof.

Richard de Grijs, who led the study. This leads them to sink to the cluster center, while the lower-mass stars gain energy and might move to orbits at greater distances from the cluster core. Astronomers call this process "mass segregation."

However, when the Kavli researchers looked closely at binary star systems within NGC 1818, they found a much more complex picture.

Most stars in clusters actually form in pairs, called "binary stars," which initially are located so close to one another that they interact, resulting in the destruction of some binary systems.

Other binaries, meanwhile, swap partners. Astronomers had expected that the same process that leads a cluster's most massive stars to gravitate toward the center would also apply to binaries. This is because together, the stars that make up binaries have more mass on average than a single star.

When the astronomers discovered that there were more binaries the farther from the core they observed, they were initially baffled by this unexpected result. They concluded that so-called "soft" binary systems, in which the two stars orbit each other at rather large distances, are destroyed due to close encounters with other stars near the cluster's center.

Meanwhile, "hard" binaries, in which the two stars orbit one another at much shorter distances, survive close encounters with other stars much better, all throughout a cluster. This is why more binaries were seen farther out than close in.

Mapping the radial distribution of binary systems in dense star clusters had never been done before for clusters as young as NGC 1818, which is thought to be 15-30 million years old. This is difficult to do in any case, because there are no young clusters nearby in our own Milky Way galaxy. The new result provides new insights into theoretically predicted processes that govern the evolution of star clusters.

"The extremely dynamic interactions among stars in clusters complicates our understanding of gravity," team member Chengyuan Li said. "One needs to investigate the entire physical environment to fully understand what's happening in that environment. Things are usually more complex than they appear."

The team's finding will be published in the March 1 print issue of The Astrophysical Journal and is now online here

.


Related Links
Kavli Institute for Astronomy and Astrophysics (KIAA)
The Physics of Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








PHYSICS NEWS
Physicists discover key to ultra-stable bearings
London, UK (SPX) Feb 21, 2013
Networks of rotating bearings can better recover from perturbations to their harmonious motion if the masses of the individual discs are proportional to their radii - this is the finding of a team of physicists based in Switzerland and Brazil. Although surprising, the result hints at how to construct more robust mechanical bearings, as well as offering fresh insight into the synchronizatio ... read more


PHYSICS NEWS
Building a lunar base with 3D printing

US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

US, Europe team up for moon fly-by

PHYSICS NEWS
NASA Rover Confirms First Drilled Mars Rock Sample

India plans mission to Mars in 2013

Rover finds gray rock beneath Red Planet's surface

Bleach could hamper Mars life search

PHYSICS NEWS
NASA plant study headed to space station

NASA Spinoff 2012 Features New Space Tech Bettering Your Life Today

Orion Lands Safely on Two of Three Parachutes in Test

Supersonic skydiver even faster than thought

PHYSICS NEWS
Welcome Aboard Shenzhou 10

Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

PHYSICS NEWS
NASA briefly loses contact with space station

Temporary Comm Loss Interrupts Crew's Day

Low-Gravity Flights Will Aid ISS Fluids and Combustion Experiments

Progress docks with ISS

PHYSICS NEWS
NASA Seeks University Participants for Summer Rocket Workshop

Another Sea Launch Failure

ILS Concludes Yamal 402 Proton Launch Investigation

Ariane 5 delivers record payload off back-to-back launches this week

PHYSICS NEWS
Searching for a Pale Blue SPHERE in the Universe

Earth-like planets are right next door

Direct Infrared Image Of An Arm In Disk Demonstrates Transition To Planet Formation

Kepler Data Suggest Earth-size Planets May Be Next Door

PHYSICS NEWS
Engineers show feasibility of superfast materials

Sony bills PS4 console as gaming's future

Lessons from nature could lead to the creation of new materials

'Explorers' to don Google Internet glasses




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement