. 24/7 Space News .
A Giant Star Factory In Neighboring Galaxy

Stunning Desktop Available
  • 800X600     1024X768
  • 640x480     1280X1024
    Resembling curling flames from a campfire, this magnificent nebula in a neighboring galaxy is giving astronomers new insight into the fierce birth of stars, which may have been more a typical occurrence in the early universe. The glowing gas cloud, called Hubble-V, has a diameter of about 200 light-years. A faint tail of gas trailing off the top of this Hubble Space Telescope image sits opposite a dense cluster of bright stars at the bottom of the irregularly shaped nebula. Credits: NASA, ESA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: C. R. O'Dell (Vanderbilt University) and L. Bianchi (Johns Hopkins University and Osservatorio Astronomico, Torinese, Italy)

  • Baltimore - Dec 6, 2001
    Resembling curling flames from a campfire, this magnificent nebula in a neighboring galaxy is giving astronomers new insight into the fierce birth of stars as it may have more commonly happened in the early universe.

    The glowing gas cloud, called Hubble-V, has a diameter of about 200 light-years. A faint tail of nebulosity trailing off the top of the image sits opposite a dense cluster of bright stars at the bottom of the irregularly shaped nebula.

    NASA's Hubble Space Telescope's resolution and ultraviolet sensitivity reveals a dense knot of dozens of ultra-hot stars nestled in the nebula, each glowing 100,000 times brighter than our Sun.

    These youthful 4-million-year-old stars are too distant and crowded together to be resolved from ground-based telescopes. The small, irregular host galaxy, called NGC 6822, is one of the Milky Way's closest neighbors and is considered prototypical of the earliest fragmentary galaxies that inhabited the young universe. The galaxy is 1.6 million light-years away in the constellation Sagittarius.

    Hubble's spectacular resolution allowed a group of European and American astronomers to pinpoint individual stars in this crowded region and measure their brightness and temperatures. (Hubble-V represents one of two star-birth regions studied by the astronomers.)

    They made their extensive analysis because of the telescope's ability to detect ultraviolet light, which is emitted by the hottest young stars. Their analysis has provided a better understanding of the populations of stars inside the cloud.

    Hubble's sharp "eye" also allowed the astronomers to estimate the temperatures, brightness, ages, and masses of many stars. From this information, the astronomers determined that many of the stars formed at the same time.

    The hot, massive stars emit a tremendous amount of radiation, which sculpted and illuminated the large gas cloud in which the stars were born. The cloud is actually composed of several "bubbles" of gas blown by the hefty stars. The hot radiation also energizes the gas, making it glow.

    Besides unleashing powerful ultraviolet radiation, the massive stars also lose a significant amount of mass in "stellar winds." These winds travel at supersonic speeds (up to 6.7 million miles an hour or 10.8 million kilometers an hour), carrying away up to more than a solar mass per star every million years.

    The winds slam into the surrounding gas cloud, and may play a major role in triggering star formation of smaller-mass stars. The young stellar families in Hubble-V are revealing the exact roles of all the stars in a stellar breeding ground. Hubble-V resides in a galaxy called NGC 6822, 1.6 million light-years away.

    Why are these very massive stars so important?
    The interiors of massive stars - unlike those of most stars, including the Sun - reach high enough temperatures to transform through nuclear fusion great quantities of primordial elements, such as hydrogen and helium, into heavier elements. Therefore, they are responsible for producing all the existing oxygen, carbon, nitrogen, silicon, and calcium - just to name a few very familiar, life-sustaining elements.

    And they do so very effectively, too.

    A very massive star completes its life cycle in about 10 million years (1,000 times faster than the Sun). As a massive star reaches the end of its life, it releases most of its processed material back into space by exploding as a supernova or by shedding it more gently, forming the delicate shells of a planetary nebula.

    The Hubble-V image data was taken with Hubble's Wide Field Planetary Camera 2 (WFPC2) by two science teams: C. Robert O'Dell of Vanderbilt University and collaborators, and Luciana Bianchi of Johns Hopkins University and Osservatorio Astronomico, Torinese, Italy, and collaborators.

    This color image was produced by The Hubble Heritage Team (STScI). A Hubble image of Hubble-X, another intense star-forming region in NGC 6822, was released by The Heritage Team in January 2001.

    Related Links
    Star Factory In NGC 6822 - More Pixs
    SpaceDaily
    Search SpaceDaily
    Subscribe To SpaceDaily Express



    Memory Foam Mattress Review
    Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
    XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


    Painting with Oxygen and Hydrogen
    Paris - Oct 18, 2001
    A new image from the Hubble Space Telescope is an example of 'painting with light'. Astronomers use the separated colours produced by oxygen and hydrogen to investigate star-forming processes in the nebula NGC 2080. The colours explain much about the nature of such nebulae.







  • Building Viable Space Markets
  • Space Adventures Announces Second Client To Fly To The International Space Station
  • Gender Issues Related To Spaceflight: A NASA Perspective
  • Bush Appoints Bean Counter In Bid To Salvage NASA From ISS Overruns

  • Laser Altimeter Provides First Measurements Of Seasonal Snow Depth On Mars
  • Cheap Leap To Phobos
  • New Research From U.Colorado-Boulder Reveals Mars' Lumpy Magnetic Field
  • Nature's Flight System Could Be Key To Exploring Mars

  • INSAT-3C Transported to Kourou For January Launch
  • Last Boeing Delta 2 For 2001 Will Launch An Argonaut
  • Canada's First Space Telescope to Ride a "Rockot"
  • Space Communications, Khrunichev To Cooperate

  • Envisat Set To Flood Earth With New Data
  • Envisat No. 1 -- Europe's Environment Satellite
  • New views of Earth
  • DigitalGlobe Successfully Launches QuickBird Imaging Satellite

  • Surviving Oblivion In Deep Space
  • Into The Deep Space Of Nowhere
  • Into The Deep Space Of Nowhere
  • Out To The Horizon Of Sol

  • First Image and Spectrum of a Dark Matter Object
  • Taking The Medium Class Route To Deep Space
  • No Bucks Without ET
  • Shuttle Ready To Collide With Some Dust

  • Moon and Earth Formed out of Identical Material
  • Lunar Soil Yields Evidence About Sun's Dynamic Workings
  • Unique tasks for SMART-1 in exploring the Moon
  • NASA Seeks Berth On India's Moon Mission

  • Global Positioning System May Help Measure Sea Height
  • Paradigm Chosen to Provide GPS-based Tracking for Highly Sensitive Security Application
  • GPS Satellite Signals Help Drivers Save Fuel and Reduce Emissions
  • Galileo Development Forges Ahead Pending Ministerial Decisions

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement