. 24/7 Space News .
TECH SPACE
AFRL, partners develop innovative tools to accelerate composites certification
by Staff Writers
Wright-Patterson AFB OH (SPX) Feb 03, 2020

Air Force Research Laboratory and Cornell High Energy Synchrotron Source personnel collaborate at the Functional Materials Beamline of the Materials Solution Network section of CHESS. (Courtesy photo)

In partnership with industry, a team of Air Force Research Laboratory/Cornell High Energy Synchrotron Source (CHESS) personnel are developing the capability to accelerate certification of advanced manufactured composite structures.

Creating a new materials characterization subfacility, known as the Materials Solutions Network, will drive composite manufacturing into a physics-based exact science that can be predicted and modeled in ways impossible until now, allowing faster implementation of low-cost, short-term and limited-life technologies.

The newly upgraded CHESS facility will allow breakthroughs in materials, processes and designs for aerospace and military components. The ability to process material models faster than ever will enable shorter times toward certification of new materials and difficult processing methods such as additive manufacturing.

The beamline will allow manufacturers and researchers to observe materials in real-time and at atomic scale for structural components such as the stationary section of a rotary system for DOD technologies or additively manufactured articles for limited life applications.

Obtaining tangible measurement data such as material structure in regards to gaps and interfacial quality is now a reality. Problems and processes can be eliminated sooner and refined for quality control and consistency.

Traditionally, composites manufacturing is mainly done by hand. Hence, processing is as much art as it is science. Predictive modelling relies on numerous assumptions and experimental data. Reproducibility is low and ever-changing to a new and improved material.

This revolutionary development pushes an unprecedented real-time, high resolution understanding of the manufacturing of composites. The research reveals processing effects and variations on thermoplastic and thermoset composites during consolidation processes such as stamping and additive manufacturing.

"We are now able to look at crystallization of thermoplastic feedstock and composites during 3D printing in real time, at one micrometer resolution," said Dr. Hilmar Koerner, research team lead in the Structural Materials Division of AFRL. "Mapping the detailed out-of-equilibrium and time dependent morphology data of resins and reinforcement filler onto the process history will allow manufacturers to see fine details in hours to a few days rather than months and years, allowing them to make much quicker go/no-go decisions compared to the past."

Two new X-ray beamlines - a structural materials beamline (for which higher energy X-rays are required to penetrate, e.g., metals) and a functional materials beamline (with lower energies for polymers and composites) are housed at the facility.

The structural materials beamline uses high energy X-rays to understand the evolving internal structure of metals, ceramics and composites during service and processing conditions.

The functional materials beamline is designed for analysis of soft materials, such as organic molecule and polymer-based materials and composites used in lightweight structural components and organic electronics, during processing and under real-life load conditions.

"The facility is unique because it combines state-of-the-art synchrotron-based resources and techniques with an explicit mission to address current and emerging challenges of advanced manufacturing," said Arthur Woll, Director of the MSN-C subfacility. "This combination of capabilities and mission allows projects at MSN-C to be prioritized by their importance to addressing manufacturing challenges, rather than their relevance to academic scholarship. Furthermore, CHESS is one of only five high-energy synchrotron facilities worldwide, making it particularly suitable for the kinds of measurements needed to address these challenges."

The X-ray beam at the functional materials beamline is only one hundredth of the width of a human hair and can probe interfaces between the matrix and the carbon fiber, between layers of printed composites and of bonded structures. Images can be taken at fractions of a second to enhance quality control in revealing behavior during processing. The beamline allows quick switching between different operating modes, such as small angle X-ray/wide angle X-ray scattering, phase contrast imaging and X-ray computed tomography.

Partnerships between Department of Defense, industry and academia to address DOD challenges in materials discovery, processing and manufacturing of disruptive technologies will enable advances in materials and designs for a multitude of military components.


Related Links
Air Force Research Laboratory
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
AFRL, Partners Develop Innovative Tools To Accelerate Composites Certification
Wright-Patterson AFB OH (SPX) Jan 31, 2020
In partnership with industry, a team of Air Force Research Laboratory/Cornell High Energy Synchrotron Source (CHESS) personnel are developing the capability to accelerate certification of advanced manufactured composite structures. Creating a new materials characterization subfacility, known as the Materials Solutions Network, will drive composite manufacturing into a physics-based exact science that can be predicted and modeled in ways impossible until now, allowing faster implementation of low-c ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
The science behind and beyond Luca's mission

Record-Setting NASA Astronaut, Crewmates Return from Space Station

Record-breaking US astronaut returns to Earth

NASA astronaut's record-setting mission helps scientists for future missions

TECH SPACE
Aerojet Rocketdyne delivers RL10 engines that will help send NASA astronauts to deep space

Changing the way NASA keeps it cool

Rocket Lab successfully launches U.S. spy satellite

India plans to send 50 satellite launch vehicles into orbit within next 5 years

TECH SPACE
MAVEN explores Mars to understand radio interference at Earth

Mars' water was mineral-rich and salty

Russian scientists propose manned Base on Martian Moon to control robots remotely on red planet

To infinity and beyond: interstellar lab unveils space-inspired village for future Mars settlement

TECH SPACE
China to launch more space science satellites

China's space station core module, manned spacecraft arrive at launch site

China to launch Mars probe in July

China's space-tracking vessels back from missions

TECH SPACE
Azercosmos and Infostellar to enter into Ground Station Partnership

OneWeb lifts off: Next batch ready to launch

Space science investment generates income and creates jobs

Northrop Grumman breaks ground for expanded satellite manufacturing facilities in Gilbert, Arizona

TECH SPACE
AFRL, partners develop innovative tools to accelerate composites certification

AFRL, Partners Develop Innovative Tools To Accelerate Composites Certification

UNH researchers find clues to how hazardous space radiation begins

Can wood construction transform cities from carbon source to carbon vault

TECH SPACE
NASA's Webb will seek atmospheres around potentially habitable exoplanets

To make amino acids, just add electricity

AI could deceive us as much as the human eye does in the search for extraterrestrials

NESSI comes to life at Palomar Observatory

TECH SPACE
Pluto's icy heart makes winds blow

Why Uranus and Neptune are different

Seeing stars in 3D: The New Horizons Parallax Program

Looking back at a New Horizons New Year's to remember









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.