. 24/7 Space News .
AAAAA That Is A Tiny Battery!

These are synthetic membranes that contain a parallel collection of nanotubes (Figure 2) with inside diameters of molecular dimension greater than 1 nanometer. Photo copyright Department of Chemistry, University of Florida

Gainesville -Oct 11, 2002
It would send and receive faxes and video and have the processing power of a personal computer. The cell phone of the future would be on the market today but for one hitch: the battery.

The technology is available to build cell phones that would make the latest versions -- those that allow users to send pictures and play video games -- seem almost primitive.

But the batteries now used in cell phones are not nearly powerful enough to drive all the fancy add-ons, said Charles Martin, a University of Florida chemistry professor. Laptop computers, video cameras and digital cameras also are hobbled by today's power storage technology.

Meanwhile, tiny machines being developed for a variety of purposes -- such as "lab-on-a-chip" devices that sense airborne chemical or biological pathogens -- will require batteries many times smaller and more powerful than today's smallest batteries.

So Martin and his team are making progress on a new approach: Batteries inspired by the emerging field of nanotechnology. The research could both improve the small batteries used in portable electronics and lead to truly miniscule power packs for so called "microelectromechanical" machines, or MEMS, devices.

In the first year of a five-year collaborative effort with three other institutions funded by a $5 million grant from the U.S. Office of Naval Research, the research is showing progress toward its goal of creating a three-dimensional, millimeter-sized battery � considerably smaller than the centimeter-sized hearing aid batteries that are the smallest batteries on the market today.

All batteries consist of two electrodes, an anode and a cathode, and an electrolyte solution. UF researchers have created both nano-anodes and nano-cathodes, or anodes and cathodes measured on the scale of billionths of a meter. They've shown in tests that these electrodes are as much as 100 times more powerful than traditional ones.

The electrodes also have a unique and promising structure.

"The UF progress is very significant," said Bruce Dunn, a professor of materials science and engineering at the University of California-Los Angeles, the lead institution in the project.

"Martin's work, the fabrication and testing of nano-dimensional cathodes and anodes, represents the key elements of his concentric tube battery approach, which represents a novel three-dimensional configuration."

Martin and his colleagues create the nano-electrodes using a technique he pioneered called template synthesis. This involves filling millions of tiny "nanoscopic" holes in a centimeter-sized plastic or ceramic template with a solution that contains the chemical components that make up the electrode.

After the solution hardens, the researchers remove the template, leaving only the electrodes. The next challenge is to find a way to put together the nano-anode and nano-cathode with a nano-electrolyte and other components.

"We've proposed a totally new design for a battery where all the components are nanomaterials, and we have succeeded in making nearly all of these components," Martin said. "We have not yet developed the technologies to assemble these components, and that's what we're working on."

Robbie Sides, a UF doctoral student in chemistry and one of the researchers in Martin's lab, said UF's nano-anodes and nano-cathodes are not only more powerful than traditional ones, they're also hardier.

Lithium-ion battery electrodes might sustain an average of 500 charges and discharges before wearing out, he said. In tests done by another UF chemistry doctoral student on Martin's team, the nano-electrodes sustained as many as 1,400 charges.

The new technology could improve cell phones and other portable electronics, which use lithium-ion batteries. These batteries are made of composites of small particles. Their ability to produce power depends on lithium ions diffusing throughout these particles.

While microscopic, the particles are large enough to be measured in microns, or millionths of a meter. The nano-battery approach seeks to replace these particles with particles measured in billionths of a meter, which would enhance power storage and production because the lithium ions would have less distance to travel as they diffuse.

Micro-batteries also could power tiny pumps or presses in MEMS devices. Researchers already have developed or are working on a plethora of uses for such machines, including tiny switches or environmental sensors. As Sides pointed out, however, it doesn't make much sense to make the device tiny unless there is a power source to match.

"If you have a circuit the size of a pinhead and you need a battery the size of a triple A that you get from the store, then it (the circuit) won't be useful," he said.

Related Links
Chemistry at University of Florida
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


RocketCam Will Take You Along For The Rendezvous
Pasadena - Oct 11, 2002
In what is expected to be a growing trend in the space business, a RocketCam Imaging System will provide live, color video from an unmanned spacecraft as part of the NASA-funded technology-demonstration mission planned for 2004.







  • Actel Delivers SX-A FPGAs Qualified to Military Specifications
  • Maxwell Hardens Powerpc Board For Space And Military Applications
  • Boeing-Built NASA Satellite Successfully Reaches Geosynchronous Orbit
  • Aircraft Propulsion Experts Celebrate Ccentury Of Power for Flight

  • NASA Adds To Mars Global Surveyor Photo Album
  • Mars Odyssey Releases First Data Archive to Scientists
  • The New and Exciting and Messy Exploration of Space
  • Exploring Mars Beyond 2010

  • Boeing Delta IV Team Takes Major Step Toward First Launch
  • Texas Spaceports, Mars Colonies On Drawing Board At UH
  • Russia Seeking To Keep Kazakh Space Site Until 2044
  • ILS Makes It A Hat Trick With Hispasat

  • ITT Industries Wins $113 Million Satellite Instrument Contract
  • Antarctic Forecast: Premature Break-Up Of Ozone Hole This Week
  • India Turns On First Weather Bird
  • Latin America Reaps Development Dividends With ESA Earth Observation Training

  • The bizarre "Pluto War" is almost over at last, and Pluto is winning.
  • The bizarre "Pluto War" is almost over at last, and Pluto is winning.
  • Pluto Is Undergoing Global Warming
  • Largest Solar System Object Since Pluto Found

  • Worldwide Race To Observe Fading Gamma-Ray Burst
  • ESA To Look For The Missing Link In Gravity
  • New Gravity Mission On Track To Map Earth's Shifty Mass
  • NASA Names Builder For Future Gamma Ray Observatory

  • Taos Goes Lunar With International Talkfest
  • Moon and Earth Formed out of Identical Material
  • Lunar Soil Yields Evidence About Sun's Dynamic Workings
  • Unique tasks for SMART-1 in exploring the Moon

  • Galileo Receivers - In Search Of Signals To Ignore
  • P3 AEGIS GPS System to Track U.K. Fishing Vessels
  • Navigate Via The Web With The SisNet Receiver
  • GPS Block IIR Celebrates Nickel Anniversary On Orbit

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement