Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















TECH SPACE
4-D printing gets simpler and faster
by Staff Writers
Singapore (SPX) Apr 20, 2017


File image.

4D printing is an emerging technology that allows a 3D-printed component to transform its structure by exposing it to heat, light, humidity, or other environmental stimuli. This technology extends the shape creation process beyond 3D printing, resulting in additional design flexibility that can lead to new types of products which can adjust its functionality in response to the environment, in a pre-programmed manner.

However, 4D printing generally involves complex and time-consuming post-processing steps to mechanically programme the component. Furthermore, the materials are often limited to soft polymers, which limit their applicability in structural scenarios.

A group of researchers from the SUTD, Georgia Institute of Technology, Xi'an Jiaotong University and Zhejiang University has introduced an approach that significantly simplifies and increases the potential of 4D printing by incorporating the mechanical programming post-processing step directly into the 3D printing process.

This allows high-resolution 3D-printed components to be designed by computer simulation, 3D printed, and then directly and rapidly transformed into new permanent configurations by using heat. This approach can help save printing time and materials used by up to 90%, while completely eliminating the time-consuming mechanical programming process from the design and manufacturing workflow.

"Our approach involves printing composite materials where at room temperature one material is soft but can be programmed to contain internal stress, and the other material is stiff," said Dr. Zhen Ding of SUTD.

"We use computational simulations to design composite components where the stiff material has a shape and size that prevents the release of the programmed internal stress from the soft material after 3D printing. Upon heating, the stiff material softens and allows the soft material to release its stress. This results in a change - often dramatic - in the product shape."

This new shape is fixed when the product is cooled, with good mechanical stiffness. The research demonstrated many interesting shape changing parts, including a lattice that can expand by almost 8 times when heated. This new shape becomes permanent and the composite material will not return to its original 3D-printed shape, upon further heating or cooling. "This is because of the shape memory effect," said Prof. H. Jerry Qi of Georgia Tech.

"In the two-material composite design, the stiff material exhibits shape memory, which helps lock the transformed shape into a permanent one. Additionally, the printed structure also exhibits the shape memory effect, i.e. it can then be programmed into further arbitrary shapes that can always be recovered to its new permanent shape, but not its 3D-printed shape."

Said SUTD's Prof. Martin Dunn, "The key advance of this work, is a 4D printing method that is dramatically simplified and allows the creation of high-resolution complex 3D reprogrammable products; it promises to enable myriad applications across biomedical devices, 3D electronics, and consumer products. It even opens the door to a new paradigm in product design, where components are designed from the onset to inhabit multiple configurations during service."

This research was recently published in Science Advances and was conducted by the SUTD Digital Manufacturing and Design Centre, with support from the Singapore National Research Foundation, a grant from US Air Force Office of Scientific Research (Dr. B.-L. "Les" Lee, Program Manager), as well as research grants from the US National Science Foundation.

TECH SPACE
New method for 3-D printing extraterrestrial materials
Chicago IL (SPX) Apr 13, 2017
When humans begin to colonize the moon and Mars, they will need to be able to make everything from small tools to large buildings using the limited surrounding resources. Northwestern University's Ramille Shah and her Tissue Engineering and Additive Manufacturing (TEAM) Laboratory have demonstrated the ability to 3D-print structures with simulants of Martian and lunar dust. This work uses ... read more

Related Links
Singapore University of Technology and Design
Space Technology News - Applications and Research

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Orbital ATK launches cargo to space station

Russian, American two-man crew reaches ISS

Soyuz-FG rocket to be installed at Baikonur on April 17

NASA Engages the Next Generation with HUNCH

TECH SPACE
45th SW supports Atlas V OA-7 launch

Russia and US woo Brazil, hope to use advantageous base for space launches

Creation of carrier rocket for Baiterek Space Complex to cost Russia $500Mln

Dream Chaser to use Europe's next-generation docking system

TECH SPACE
Mars spacecraft's first missions face delays, NASA says

France, Japan aim to land probe on Mars moon

Mars Rover Opportunity Leaves 'Tribulation'

NASA's MAVEN reveals Mars has metal in its atmosphere

TECH SPACE
Ticking Boxes with Tianzhou

China launches first cargo spacecraft Tianzhou-1

Tianzhou-1 space truck soars into orbit

Yuanwang fleet to carry out 19 space tracking tasks in 2017

TECH SPACE
Airbus and Intelsat team up for more capacity

Commercial Space Operators To Canada: "We're Here, and We can Help"

Antenna Innovation Benefits the Government Customer

Ukraine in talks with ESA to become member

TECH SPACE
Computers create recipe for two new magnetic materials

4-D printing gets simpler and faster

Space debris problem getting worse, say scientists

France's Melenchon returns with campaigning hologram

TECH SPACE
Evidence for Habitable Region Within Saturn's Moon Enceladus

The earliest animals were marine jellies

Distantly related fish find same evolutionary solution to dark water

Potentially Habitable Super-Earth is a Prime Target for Atmospheric Study

TECH SPACE
ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons

Hubble spots auroras on Uranus

Cold' Great Spot discovered on Jupiter




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement