Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
3-D model mimics volcanic explosions
by Staff Writers
Philadelphia PA (SPX) Jun 07, 2011


This is a simulation of the May 18, 1980 blast at Mount St. Helens (USA) at 380 seconds. Credit: Istituto Nazionale di Geofisica e Vulcanologia, Italy.

A 3-D model of a volcanic explosion, based on the 1980 eruption of Mount St. Helens in Washington state, may enhance our understanding of how some volcanic explosions occur and help identify of blast zones for potentially dangerous locations, according to an international team of volcanologists.

"We took on the modeling of enormously complicated pyroclastic density currents, notably the classic, notorious May 1980 lateral blast that destroyed 500 square kilometers of forested terrain at Mount St. Helens," said Barry Voight, professor emeritus of geology and geological engineering, Penn State.

Mount St. Helens erupted catastrophically on May 18, 1980, creating a low-angle lateral blast with an astonishing energy and particle content. The blast lasted less than five minutes, but caused severe damage over 230 square miles, killing 57 people and destroying 250 homes and 47 bridges. The damage was not caused by lava flows, but by a fast moving current of superheated gas that carried with it a heavy load of debris.

"Volcanic lateral blasts are among the most spectacular and devastating of natural phenomena, but their dynamics are still poorly understood," the researchers reported in the current issue of the journal Geology. The researchers created the 3-D model using the parameters of the Mount St. Helens blast including equations to determine mass, momentum and the heat energy of the gas, along with the size, density, specific heat and thermal conductivity of the solid particles.

"We integrated a wide range of geophysical and geochemical data to develop rigorous initial and boundary conditions for hydrodynamics calculations that reproduced, to an amazing degree, the observed dynamics of the blast envelope," said Voight.

The 3-D model reproduced the Mount St. Helens blast, closely matching the complicated boundaries of the region of devastation and observed results on the ground. In the model, the areas of ground where pressures imply that trees would be blown down fit the actual locations of destroyed forests.

"The calculations provided much insight into internal dynamics of the blast explosion cloud that could not be observed directly," said Voight.

According to the researchers, the most important factors controlling where the blast travels and causes damage are a combination of gravity and the shape of the terrain. Pyroclastic blasts are blocked by mountains and channeled down river ravines and canyons.

Previous models of the Mount St. Helens blast considered it to be dominated by a supersonic expanding jet of gas that originated at the volcanic vent. However, the research team suggests that apart from an initial burst that impacted a region less than 3.6 miles from the vent, the blast current was gravity driven. The researchers found that as the distance from the vent increased, the blast current weakened because of the energy lost while trying to go over obstacles. They also show spreading in all directions caused a slowing of the flow and that particle sedimentation removed energy from the flow.

"Our present results demonstrate that, where detailed geological constraints are available and thanks to the availability of modern supercomputers, 3-D transient and multiphase flow models can fairly accurately reproduce the main large-scale features of blast scenarios," said Voight.

The researchers note that "such an improvement in our modeling capability will make it possible to more effectively map potential blast flows at blast-dangerous volcanoes worldwide."

Other researchers on the team are Tomaso Esposti Ongaro and Augusto Neri, Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italy; C. Widiwidjayanti, formerly at Penn State but now at Nanyang Technological University, Singapore; and Amanda B. Clarke, Arizona State University.

.


Related Links
Penn State
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
This is what the margins of the Ebro looked like 6 million years ago
Madrid, Spain (SPX) Jun 07, 2011
A Spanish research team, using 3D reflection seismology, has for the first time mapped the geomorphological features of the Ebro river basin between five and six million years ago. The images obtained show that the surface analysed is today 2.5 or 3 kilometres below the sea bed. "The results shed light on the way in which the sea level fell during the Messinian (between 5.33 and 6 million ... read more


TECH SPACE
The Power of A Moon Rock

Looking at the volatile side of the Moon

Parts of moon interior as wet as Earth's upper mantle

NASA-Funded Scientists Make Watershed Lunar Discovery

TECH SPACE
Opportunity Studies Rock Outcrop

A Salute to the Spirit of Mars

One year in isolation

Opportunity Passes Small Crater and Big Milestone

TECH SPACE
FOGE Reaches 10

Testing Spacesuits in Antarctica - part 3

Five Steps Toward Future Exploration

China's growth, and weakness, on show at IT fair

TECH SPACE
Building harmonious outer space to achieve inclusive development

China's Fengyun-3B satellite goes into official operation

Venezuela, China to launch satellite next year

Top Chinese scientists honored with naming of minor planets

TECH SPACE
Soyuz heads to ISS carrying Russian, US, Japanese astronauts

New Crew Members Prepare for Launch

ATV-2 adjusts ISS orbit; ext TMA Soyuz assembled

Science and Maintenance for Station Crew

TECH SPACE
Shipments Of Sea Launch Zenit-3Sl Hardware Resume On Schedule

US Army supports student launch program

Boeing Opens Exploration Launch Systems Office in Florida

Payload processing underway for ASTRA 1N

TECH SPACE
Rage Against the Dying of the Light

Second Rocky World Makes Kepler-10 a Multi-Planet System

Kepler's Astounding Haul of Multiple-Planet Systems Just Keeps Growing

Bennett team discovers new class of extrasolar planets

TECH SPACE
Phase Change Memory-Based Moneta System Points to the Future of Computer Storage

Thomas Edison also invented the concrete house

3-D model mimics volcanic explosions

This is what the margins of the Ebro looked like 6 million years ago




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement