Subscribe free to our newsletters via your
. 24/7 Space News .




INTERN DAILY
3-D culture system for pancreatic cancer could change therapeutic approaches
by Staff Writers
Bethpage NY (SPX) Jan 02, 2015


A team of researchers has developed a method to grow pancreatic tissue in a three-dimensional culture system, called organoids. The scientists are able to use tissue not only from laboratory mouse models, but also from human patients. The technology promises to change the way pancreatic cancer research is done, offering a path to personalized treatment approaches in the future. Image courtesy D. Tuveson/ Cold Spring Harbor Laboratory.

Pancreatic cancer is one of the most deadly forms of cancer, with only 6 percent of patients surviving five years after diagnosis. Today, Cold Spring Harbor Laboratory (CSHL) and The Lustgarten Foundation jointly announce the development of a new model system to grow both normal and cancerous pancreatic cells in the laboratory.

Their work offers the potential to change the way pancreatic cancer research is done, allowing scientists to interrogate the pathways driving this devastating disease while searching for new drug targets.

In work published in Cell, the research team describes a three-dimensional "organoid" culture system for pancreatic cancer. Co-led by David Tuveson, CSHL Professor and Director of Research for The Lustgarten Foundation, and Hans Clevers, Professor and Director of the Hubrecht Institute and President of the Royal Netherlands Academy of Arts and Sciences, the team developed a method to grow pancreatic tissue not only from laboratory mouse models, but also from human patient tissue, offering a path to personalized treatment approaches in the future.

All cancer research relies on a steady supply of cells - both normal and cancerous - that can be grown in the laboratory.

By comparing normal cells to cancer cells, scientists can then identify the changes that lead to disease. However, both types of pancreatic cells have been extremely difficult to culture in the laboratory.

Furthermore, the normal ductal cells that are able to develop into pancreatic cancer represent about 10 percent of the cells in the pancreas, complicating efforts to pinpoint the changes that occur as the tumor develops.

Until now, scientists have been entirely unable to culture human normal ductal pancreatic cells under standard laboratory conditions. Because of these limitations, most pancreatic cancer research relies on genetically engineered mouse models of the disease, which can take up to one year to generate. "With this development, we are now able to culture both mouse and human organoids, providing a very powerful tool in our fight against pancreatic cancer," explains Tuveson.

The organoids are entirely made up of ductal cells, eliminating the surrounding cell types that often contaminate samples from the pancreas. They grow as hollow spheres within a complex gel-like substance filled with growth-inducing factors and connecting fibers.

Once they have grown to a sufficient size, the organoids can be transplanted back into mice, where they fully recapitulate pancreatic cancer. "We now have a model for each stage in the progression of the disease," says Chang-Il Hwang, Ph.D., one of the lead authors working in The Lustgarten Foundation's Pancreatic Cancer Research Lab at CSHL directed by Dr. Tuveson.

Traditionally, cancer cells are isolated during surgery or autopsies. Unfortunately, approximately 85 percent of cancer patients are ineligible for surgery at the time of diagnosis, either because the tumor is entwined in critical vasculature or the disease has progressed too far.

Researchers therefore have had limited access to patient samples. The new research provides a way for scientists to grow organoids from biopsy material, which is comparatively easy to obtain.

"Biopsies are the standard for diagnosis," says Dannielle Engle, Ph.D., also a lead author on the paper. "We can now rapidly generate organoids from any patient, which offers us the potential to study the disease in a much wider population."

The team is now working to create a repository of pancreatic tumor samples, coordinating with the National Cancer Institute. "We hope to make this available to the entire pancreatic cancer research community," says Tuveson. Additionally, Lindsey Baker, Ph.D., another lead author of the paper, has started holding an "organoid school" for other researchers, and has already taught six laboratories from around the world this technique.

"Organoid Models of Human and Mouse Ductal Pancreatic Cancer" appears online in Cell on December 31, 2014, and will appear in the January 15, 2015 print edition.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Cold Spring Harbor Laboratory
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





INTERN DAILY
Scientists zero in on how lung cancer spreads
London, UK (SPX) Dec 29, 2014
UK scientists have taken microscopic images revealing that the protein ties tethering cells together are severed in lung cancer cells - meaning they can break loose and spread, according to research published in Cell Reports*. The researchers at the Cancer Research UK Manchester Institute discovered that the ties which lash cells together - controlled by a protein called TIAM1 - are choppe ... read more


INTERN DAILY
'Shooting the Moon' with Satellite Laser Ranging

Moon Express testing compact lunar lander at Kennedy

UK Plans to Drill Into Moon, Explore Feasibility of Manned Base

Carnegie Mellon Unveils Lunar Rover "Andy"

INTERN DAILY
Russian scientists 'map' water vapor in Martian atmosphere

Flying over Becquerel

New idea for transporting spacecraft could ease trip to Mars

NASA, Planetary Scientists Find Meteoritic Evidence of Mars Water Reservoir

INTERN DAILY
FFD signs Space Act Agreement with NASA for Space Suit Development

NASA Commercial Crew Partners Complete 23 Milestones in 2014

NASA Selects Commercial Space Partners for Collaborative Partnerships

Does the peer review process stifle scientific innovation?

INTERN DAILY
China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

China develops new rocket for manned moon mission: media

Service module of China's returned lunar orbiter reaches L2 point

INTERN DAILY
Bright lights: big cities at night

NASA, SpaceX Update Launch of Fifth SpaceX Resupply Mission to ISS

Fifth SpaceX Mission Lets the CATS Out on the International Space Station

Politics no problem, say US and Russian spacefarers

INTERN DAILY
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Russian Space Agency Pushes Back Earth Imaging Satellite Launch to Friday

Thirty-five years of Ariane: how Ariane was born

Strela Rocket With Kondor-E Satellite Blasts Off From Baikonur

INTERN DAILY
Kepler Proves It Can Still Find Planets

NASA's Kepler Reborn, Makes First Exoplanet Find of New Mission

Super-Earth spotted by ground-based telescope, a first

Astronomers spot Pluto-size objects swarming about young sun

INTERN DAILY
Lead islands in a sea of graphene magnetize the material of the future

Penn Researchers Show Commonalities in How Different Glassy Materials Fail

Theory details how 'hot' monomers affect thin-film formation

Back to future with Roman architectural concrete




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.