. 24/7 Space News .
Carl Zeiss And Max Planck Researchers Develop Optical Technology For JWST

Illustration of the MIRI instrument/ filter wheel on JWST.
Heidelberg, Germany (SPX) Dec 09, 2005
Carl Zeiss Optronics, in Oberkochen, Germany, and the Max Planck Institute for Astronomy in Heidelberg (MPIA), are developing the main fine mechanical optical technology for two instruments to be part of the James Webb Space Telescope (JWST).

Over the next eight years, under administration of the European Space Agency and NASA in the USA, the JWST (with a mirror of 6.5 metres) will shape up to be the successor to the legendary Hubble Space Telescope. Carl Zeiss and the Max Planck Institute signed a contract on November 29 to co-operate in their work on the MIRI and NIRSpec instrumentation of the JWST.

The James Webb Space Telescope is going to replace the Hubble Space Telescope in the next few decades as the most important tool for astronomical observation. The most important scientific goal of the mission is to discover the "first light" of the early universe - the formation of the first stars out of the slowly cooling Big Bang.

The light from these first stars and galaxies has shifted into the infrared spectrum because its wavelength has stretched out some twenty times, as the universe has been expanding. The infrared (warm) radiation of the telescope and its instruments could disturb these weak cosmic signals. In order to prevent this, the telescope has to be essentially deep frozen.

For this reason, the JWST will be stationed at the "Lagrangian point L2", 1.5 million kilometres outside the Earth's orbit. The gravitational forces of the Sun and the Earth balance each other at L2, so the JWST can maintain a position synchronous with the sun and the Earth, permanently on the far side of the Earth from the sun. Here, the telescope and its instruments will cool down to -230 degrees Celsius.

The extremely high sensitivity and resolution of the huge telescope will lead to entirely new insights about the formation of stars and planets in the Milky Way Galaxy. These investigations are only possible in the infrared spectrum. Unlike visible light, infrared light can pass through the thick gas and dust clouds, in which planets and stars form, without being appreciably weakened.

The telescope and its instruments make immense demands. They will be subject to initial stress at an acceleration much higher than the Earth's, and then cooled down to a temperature almost reaching absolute zero (-273 degrees Celsius). After the telescope is put into operation at its final location, its astronomical instruments will be adjusted to a high level of accuracy and have to be kept there - roughly equivalent to targeting the point of a needle from a one-kilometre distance.

The Space Telescope has three instruments on board for data recording: MIRI, NIRSpec, and NIRCam. MIRI and NIRSpec are being developed and built in Europe. Carl Zeiss and the MPIA will be making a major contribution, as the only European representatives, to both instruments.

For the MIRI and NIRSpec, Carl Zeiss will deliver the filter and grating changing mechanisms which allow the instruments to be precisely configured for various types of observation. The MPIA will also be participating in their development and testing. Futhermore, Carl Zeiss will be delivering two filter and grating mechanisms for the NIRSpec instrument to EADS Astrium. The contract that Carl Zeiss and the MPIA signed specifies that they will co-operate in producing both instruments.

The MIRI and NIRSpec mechanisms are similar, related projects. Their development and testing will take place in the next two-and-a-half years; after that, Carl Zeiss and the MIPA will install them. It is planned that in the year 2013, a European Ariane 5 rocket will bring the JWST to the Lagrangian point L2. The entire operation with MIRI and NIRSpec is being organised by the European Space Agency, the German Aerospace Center, and the Max Planck Society.

Carl Zeiss and the Max Planck Institute for Astronomy have already worked together successfully on challenging projects developing space instruments. One example is ISOPHOT, a major contribution to the success of the European Infrared Space Observatory, ISO. Recently, they began co-operating on the PACS instrument of the HERSCHEL European space observatory, set to start operations in 2008.

Carl Zeiss and the MPIA have won a great deal of trust from international partners through their co-operation. Now, the two organisations are setting foot on terra nova: astronomers from Heidelberg hope to observe the borders of the cosmic "dark ages", before stars started to form. Together, they are looking forward to developing optomechanical systems of unprecedented quality. They will guarantee both success for the astronomical "flagship" mission JWST, and a competitive edge for all kinds of imaginable future applications.

Related Links
JWST at ESA
JWST at NASA
Max Planck Institute for Astronomy
Carl Zeiss Optronics
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Ball Aerospace Accelerates Focusing Techniques On James Webb Space Telescope
Boulder CO (SPX) Dec 07, 2005
Ball Aerospace engineers, under contract to Northrop Grumman Space Technology, are now accelerating the development of an optical testbed that will simulate the focusing characteristics of NASA's James Webb Space Telescope (JWST).
Ottawa's EMS Wins Key Component Design Contract For NASA's JWST Telescope
Longueuil QC (SPX) Sep 30, 2005
The Canadian Space Agency recently awarded a $26.2-million contract to the Space and Technology Group of Ottawa-based EMS Technologies for the detailed design of a fine guidance sensor and a tuneable filter for NASA's next-generation space telescope.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.