. 24/7 Space News .
UA Mirror Lab To Cast First Mirror For Giant Magellan Telescope

The baseline GMT dome is cylindrical in shape and allows for maximum ventilation. A series of lourvers can be opened or closed to allow maximum airflow while shielding the telescope from wind-loading. The dome shutters open in two pieces, one below and one above the aperture. These shutters can also be used as wind screens and moon-shades.
Tucson AZ (SPX) Dec 15, 2004
The University of Arizona Steward Observatory Mirror Laboratory and the Carnegie Observatories of the Carnegie Institution have signed an agreement to produce the first mirror segment for the Giant Magellan Telescope (GMT), a project of the multi-institutional GMT consortium.

The Steward Observatory Mirror Lab in Tucson, Ariz., will cast the 27-foot (8.4-meter) mirror next summer, in 2005.

The GMT will be located at the Carnegie Observatories' site at Las Campanas, Chile.

The eight partners in the GMT project consortium are the Carnegie Observatories, the University of Arizona, Harvard University, Smithsonian Astrophysical Observatory, University of Michigan, Massachusetts Institute of Technology, University of Texas at Austin, and Texas A & M University.

"The National Academy of Sciences' astronomy decadal survey has ranked extremely large telescopes as the highest priority for ground-based optical astronomy," Steward Observatory Mirror Laboratory Director and Regents' Professor J. Roger P. Angel said.

"The GMT is the first of this next-generation, which is several times larger than the current generation of large telescopes, to begin construction of the primary mirror optics."

The GMT's primary mirror will consist of seven large mirror segments, each 27 feet (8.4 meters) in diameter. The mirror to be cast next summer will be the first of six identical outer segments that will be arranged in a hexagon around the seventh, central element.

Together they will bring light to a focus much as a single mirror 70 feet (21.4 meter) in diameter � roughly as wide as the 2004 Christmas tree in New York's Rockefeller Center is tall.

When corrected for atmospheric blurring with adaptive optics, the telescope will make infrared images ten times sharper than the Hubble Space Telescope, the same as a single 83-foot (25.4 meter) mirror in space.

"The GMT builds on concepts and technologies developed for the Large Binocular Telescope (LBT), which is approaching completion on Mount Graham," Steward Observatory Director and Regents' Professor Peter Strittmatter said.

"With its seven 8.4-meter mirrors, the GMT will provide a major advance in light-gathering power along with superb optical properties for high-resolution imaging of very faint objects. The GMT will be a huge advance for astronomy worldwide, and it's great to see the project get under way. We at the UA are proud to be partners in this epoch-making project."

The GMT, scheduled for completion in 2016, will be able to probe the secrets of planets that have formed around other stars in the Milky Way, peer back in time toward the Big Bang with unprecedented clarity, delve into the nature of dark matter and dark energy, and explore the formation of black holes. These rank among the most important questions in astronomy today.

The GMT capitalizes on the technology base that UA Steward Observatory and collaborating institutions have developed for a series of current-generation large telescopes: the MMT in southern Arizona, twin Magellan telescopes in Chile, and the Large Binocular Telescope on Mount Graham, Ariz.

The GMT will use the lightweight, honeycombed borosilicate primary mirrors for which the Mirror Lab is famous. Six GMT primary mirror segments will be off axis, that is, they'll focus light at an angle so it merges with light focused by the on-axis central mirror.

"The net effect is that the GMT will appear to have a single 26-meter mirror covered with a mask consisting of seven 8.4-meter apertures," Strittmatter said.

"Fabricating the off-axis mirrors is the new element in the program, and this first GMT mirror will serve to demonstrate the technology at the 8.4-meter scale."

In preparation for making the GMT mirror, a Mirror Lab team headed by Buddy Martin already is working on a 5.5-foot (1.7 meter) off-axis aspheric primary mirror, a one-fifth scale GMT mirror fabrication demonstration that will be used for the New Solar Telescope at Big Bear Observatory.

The GMT will incorporate other advanced technologies pioneered by Steward Observatory and collaborating researchers in Italy. Its adaptive optics system - a system that compensates for light blurring in Earth's atmosphere will be directly integrated into the telescope optics. The deformable secondary mirror will make the correction.

The nearly 10-foot (3 meter) diameter secondary mirror will be electro-magnetically gripped by thousands of computer-controlled 'actuators' that tweak the mirror with nanometer precision. The unique system has been pioneered at the MMT and also is being incorporated in the LBT.

Researchers at Steward Observatory also are developing a tomographic system to measure atmospheric blurring.

"The Giant Magellan Telescope will allow an unprecedented view of extrasolar planets, as well as a window out to the largest scales and back to the earliest moments in the universe," Wendy Freeman, director of the Carnegie Observatories, said.

"We plan to complete the GMT so that it will work in tandem with the future generation of planned ground- and space-based telescopes.

"The real distinction of GMT, however, is that it is building on a heritage of successful technology," Freeman added. The performance of the twin Magellan telescopes at Las Campanas "has far exceeded our expectations," she said.

Related Links
The University of Arizona
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

New Super Lens To Gaze At The Sun By Early 2006
Newark NJ (SPX) Dec 02, 2004
"This is an exciting time in all fields of astronomy because advances in technology enable us to build instruments that would have been only dreams a few years ago," said lead researcher Philip Goode, PhD, distinguished professor of physics at NJIT and director of Big Bear Solar Observatory (BBSO), California, where the telescope will be installed. NJIT has operated the facility since 1997.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.