. 24/7 Space News .
Scientists Model Physics Of Stellar Burning

VLA radio image of V4334 SGR. Image courtesy: American Association of Variable Star Observers. Stars typically evolve into white dwarfs and die when they have used up most of their hydrogen, but about a quarter of them, like V4334 Sgr, experience a brief rebirth when their helium suddenly ignites, and the remaining hydrogen in the outer regions is drawn into the helium shell through rapid mixing, causing a massive nuclear explosion.
Los Alamos NM (SPX) Apr 18, 2005
A University of California scientist at Los Alamos National Laboratory working with astronomers from around the world recently validated a computer model that predicts the rebirth and stellar burning and mixing processes of evolved stars.

The discovery is a leap forward in our understanding of how stars like the sun evolve through violent outbursts during their evolution.

In research published recently in the journal Science, Laboratory astrophysicist Falk Herwig and his colleagues describe how Herwig's computer model was recently corroborated by radio telescope observations made at the Very Large Array (VLA) in Socorro, N.M.

The radio signals collected by the VLA indicate that a star in the constellation Sagittarius known as V4334 Sgr, or Sakurai's Object, is about to re-illuminate it's planetary nebula for the second time, initiating a new phase in the spectacular evolution of this enigmatic star.

This never before seen event is another step in a complex chain of events initially triggered by a nuclear burst after the star had already become a hot white dwarf.

Computer simulations of the stellar outburst made nearly 10 years ago by Herwig and others had predicted this series of physics events that would lead up to the rejuvenated planetary nebula.

However, V4334 Sgr failed to follow the script as events moved many times more quickly than the simulations predicted.

In 2001, Herwig proposed a new fast-evolving model, claiming the problem may be the way in which nuclear burning and rapid mixing was simulated.

Stars typically evolve into white dwarfs and die when they have used up most of their hydrogen, but about a quarter of them, like V4334 Sgr, experience a brief rebirth when their helium suddenly ignites, and the remaining hydrogen in the outer regions is drawn into the helium shell through rapid mixing, causing a massive nuclear explosion.

This burst of energy will expand the dying star to gigantic proportions and lower surface temperatures and, in the process, expel prodigious amounts of carbon. V4334 Sgr has just evolved through this phase.

Herwig's new model predicts that V4334 Sgr will now become much hotter very rapidly and will then slowly repeat the stellar rebirth cycle once more, returning to its current cooler temperature in roughly two hundred years.

Only then follows the final episode of reheating for a third time before V4334 Sgr eventually will become an inactive cooling white dwarf.

In addition to Herwig, who works in the Laboratory's Theoretical Division, the stellar burning team included Marcin Hajduk of the University of Manchester and Centrum Astronomii UMK; Peter A.M. van Hoof of Queen's University in Belfast and the Royal Observatory of Belgium; Florian Kerber of the European Southern Observatory in Germany; Stefan Kimeswenger of the University of Innsbruck, Austria; Don Pollacco of Queen's University in Belfast; Aneurin Evans of Keele University in Staffordshire, UK; Jose Lopez of the National Autonomous University of Mexico in Ensenada; Myfanwy Bryce of Jodrell Bank Observatory in the UK; Stewart P.S. Eyres of the University of Central Lancashire in the UK; and Albert Zijlstra and Mikako Matsuura of the University of Manchester.

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Old Star's "Rebirth" Gives Astronomers Surprises
Manchester, UK (SPX) Apr 07, 2005
Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope are taking advantage of a once-in-a-lifetime opportunity to watch an old star suddenly stir back into new activity after coming to the end of its normal life.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.