. 24/7 Space News .
Navigating A Comet Traverse Is Wild

As of December 15, the spacecraft was about 9.5 million kilometers (6 million miles) from the comet, and closing in at a rate of about 530,000 kilometers (330,000 miles) every day. The comet was first spotted by the spacecraft's camera on November 17, and more images have been coming in every few days, allowing the navigators to more accurately determine where the spacecraft is with respect to the comet.
Pasadena - Dec 18, 2003
Imagine driving through heavy fog to a place you've never been, guided only by a faint taillight in the distance. The challenge is similar to one NASA will take in January 2004 by flying its Stardust mission through the halo of dust that surrounds the nucleus of a comet.

"With Mars and other planets, we know relatively well where the planets are," said Dr. Shyam Bhaskaran, a Stardust navigation specialist at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "This is not the case with comets, which are not easily observed because they are small objects with gas jets. It is much harder to predict their orbits, which is why we have a little extra help from a camera onboard the spacecraft."

One of three methods the Stardust navigation team is using to find their way, optical navigation involves placing a 200mm focal length camera onboard the spacecraft as it flies to its target, a comet called Wild 2 (pronounced Vilt). The camera photographs the view from the spacecraft about twice a week until 10 days before its encounter with the comet.

It then photographs the view three times daily until 72 hours before encounter, when it begins taking one image per hour. These images continuously help engineers on the ground figure out where the spacecraft is in relation to the comet.

Based on those images and other data, engineers can plan maneuvers accordingly and document the mission. This method is especially necessary since the comet flew behind the sun as viewed from Earth in May 2003, thus making Earth-based observations impossible.

"Trying to view the comet from Earth at this point would be almost like trying to find a firefly behind a fire," Bhaskaran said.

The Wild 2 comet is not expected to emerge until several weeks before its encounter with the spacecraft. Its fiery path aside, the comet is the mission's best available target. The decision to fly by this comet was based on a number of factors including fuel constraints and mission launch date, as well as a database of information established by ground-based astronomers.

Along with optical navigation, Stardust engineers employ standard Doppler and range tracking techniques during the mission's cruise phase. The techniques, used by all interplanetary missions, involve relaying radio signals from the spacecraft to Earth via the Deep Space Network's three worldwide tracking stations in Australia, Spain and California.

These signals reveal details about the spacecraft's orbital path when compared with a mathematical model of the solar system, and allow engineers to pinpoint the spacecraft's position relative to Earth. Engineers are also able to adjust the path of the spacecraft based on this information.

As of December 15, the spacecraft will be about 9.5 million kilometers (6 million miles) from the comet, and closing in at a rate of about 530,000 kilometers (330,000 miles) every day. The comet was first spotted by the spacecraft's camera on November 17, and more images have been coming in every few days, allowing the navigators to more accurately determine where the spacecraft is with respect to the comet. Comets, however, are unpredictable objects.

"We don't anticipate any surprises, but we have to be prepared, and that's what makes this job anything but routine," Bhaskaran said. "With a little luck and a lot of skill, we should be able to meet the mission's goal of flying by Wild 2 at a distance of 300 kilometers (186 miles)."

Related Links
Stardust at JPL
NASA First Person Video Interview With Dr. Shyam Bhaskaran
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

UK Scientists All Set For New Year Encounter With A Comet
London - Dec 17, 2003
On January 2nd 2004 the NASA space mission, Stardust, will fly through comet Wild 2, capturing interstellar particles and dust and returning them to Earth in 2006. Space scientists from the Open University and University of Kent have developed one of the instruments which will help tell us more about comets and the evolution of our own solar system and, critical for Stardust, its survival in the close fly-by of the comet.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.