. 24/7 Space News .
Remote Control Insects

MIT micromachine or ant-colony metaphor for space exploration Credit: MIT AI Lab.
by Astrobiology Magazine Moffett Field CA (SPX) Apr 11, 2005
Yale University School of Medicine researchers have found a way to exercise a little mind control over fruit flies, making the flies jump, beat their wings, and fly on command by triggering genetic "remote controls" that the scientists designed and installed in the insects' central nervous systems, according to a new report in the 8 April issue of the journal Cell.

Susana Lima and Gero Miesenbock hope that the remote control system will provide a valuable way to study how nerve-cell activity and connections are related to specific behaviors, from simple movements to more complex behaviors like learning, aggression, and even abstract thought.

The ability to control specific groups of neurons without implanting electrodes in the brain or using similarly invasive techniques "would represent a significant step in moving neuroscience from passive observation to active and predictive manipulation of behavior," the Cell authors write.

Miesenbock also says "one could use this method to restore neural signals that have been lost" due to injury or disease, such as in spinal cord trauma, although he notes that the possibility is "far-fetched" at the moment.

The remote control is based on the idea that specific nerve cells could be equipped with molecular "receivers" that allow them to recognize an outside signal like a laser light pulse and translate that signal into the electrical signals characteristic of nerve-cell activity.

To accomplish this, Miesenbock and Lima devised a triggered molecular lock and key system, where the "lock" was the receiver genetically encoded to be expressed in the target neurons, the "key" was the molecule that would bind to and activate the lock, and laser light was the trigger that brought the key to the lock.

For the lock, the researchers used an ion channel, or a pore-forming protein that allows charged particles to pass through a cell membrane. The small molecule ATP activates the ion channel chosen by the researchers, so ATP became the key.

To keep the ATP from binding to the ion channel and jump-starting the nerve cell's activity before the proper moment, Lima and Miesenbock caged the ATP with other chemical compounds that could be removed by the laser light.

Miesenbock says one of the most difficult parts of the experiment was deciding which particular nerve cells to target with the remote control system.

"To ascertain that the system actually worked, it wasn't clear how we could measure activation in the neurons in moving, freely behaving organisms," he explains.

The breakthrough, he says, came when they decided to target a small set of nerve cells in the fly called the giant fiber system. The giant fiber system controls very specific, stereotypical movements such as escape movements, jumping, and the beginnings of flight.

If the flies engaged in these behaviors after the giant fiber neurons had been outfitted and "operated" with the remote control, Miesenbock and Lima reasoned, they could be sure that their system was working.

After genetically engineering the flies to express the ion channel in the giant fiber system cells and using the tiniest of injections to place the caged ATP inside the flies, the researchers shone a ultraviolet-wavelength laser in brief, millisecond pulses at the flies trapped inside a glass-domed arena.

On command, the flies began a series of escape movements - extending their legs, jumping, and opening and rapidly flapping their wings.

The laser-triggered remote controls in the giant fiber system worked about 63 percent of the time, while remote controls placed in other nerve cells that were targets of the giant fiber system worked 82 percent of the time, the researchers concluded.

Lima and Misenbock also equipped another set of nerve cells called dopaminergic neurons with the remote controls, boosting the flies' activity levels and changing their flight paths.

Misenbock says the triggered behaviors can last seconds or continue for minutes, depending on whether the neural circuit activated by the remote control has feedback loops that keep the circuit.

"In the case of the flight circuits," he says, "it is like pushing a swing. One initial kick and it keeps swinging back and forth for a while."

Related Links
Yale University School of Medicine
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Ophthalmologists And Physicists Team Up To Design Bionic Eye
Stanford CA (SPX) Apr 05, 2005
Stanford physicists and eye doctors have teamed up to design a "bionic eye," of sorts.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.