. 24/7 Space News .
New Algorithm Improves Imaging Resolutions
Champaign Ill - November 2, 1998 - Superior radar images of the moon, inner planets and asteroids are possible with a "polar-format" radar-processing algorithm developed at the University of Illinois. The algorithm, from spotlight-mode synthetic aperture radar, provides improved image quality over conventional processing, without an excessive increase in computational requirements or complexity.

"In astronomy, radar reflectivity data are sometimes used to supplement other types of observations," said David Munson, a U. of I. professor of electrical and computer engineering. "Radar measurements, for example, have proven particularly useful for imaging Venus, where a thick layer of clouds perpetually obscures the planet's surface. Oftentimes, however, the radar images produced from Earth-based measurements are of poor quality."

Conventional radar-imaging systems are based on range-Doppler techniques, Munson said. "But in the time it takes to collect astronomical data -- typically 10 to 20 minutes -- the object's rotation causes both the range and the radial velocity of reflectors to change with time. Because conventional range-Doppler processing makes no allowance for this relative motion, the resulting image is blurred."

The polar-format, spotlight-mode synthetic aperture radar approach avoids this problem by affixing a spatial-domain coordinate system to the target. As the object rotates with respect to the radar, the coordinate system rotates with it, thus avoiding smearing in the image.

Munson, former graduate student Jennifer Webb (now a researcher at Texas Instruments) and Nick Stacy, a researcher with the Microwave Radar Division of the Defense Science and Technology Organization in Australia, recently applied the polar-format radar-processing algorithm to lunar reflectivity data collected at Arecibo Observatory in Puerto Rico.

"Although the moon constantly presents the same face toward Earth, we get to see it from different angles as it moves," Munson said. "And in our mathematical model, that's all that's required. The principle employed is nearly identical to that used in computer tomography in medical imaging."

The high-resolution lunar images produced by the researchers were far superior to what had been obtained in the past with conventional radar-processing techniques. "The amount of computational work was only three times what was formerly required," Munson said. "So, with a small increase in computational effort, we can get vastly improved imaging."

As an additional benchmark, the researchers compared their images with those obtained with another approach developed by Stacy, called focused range-Doppler processing. This latter technique "produces the best known results, but is much more expensive, computationally," Munson said. "Our polar-format processing algorithm performed nearly as well, with considerably less effort."

The researchers describe their algorithm and present their results in the November issue of IEEE Transactions on Image Processing.

  • LINK




    Thanks for being here;
    We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

    With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

    Our news coverage takes time and effort to publish 365 days a year.

    If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
    SpaceDaily Contributor
    $5 Billed Once


    credit card or paypal
    SpaceDaily Monthly Supporter
    $5 Billed Monthly


    paypal only














  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.