. 24/7 Space News .
Search For The Pentaquarks Get Strongest Confirmation Yet

Troy - Feb 04, 2004
An international team of physicists has provided the best evidence to date of the existence of a new form of atomic matter, dubbed the "pentaquark." The research team confirmed the existence of pentaquarks by using a different approach that greatly increased the rate of detection compared to previous experiments. The results are published as the cover story in today's issue of the journal Physical Review Letters.

"The latest, and most conclusive evidence of this five-quark particle � the 'pentaquark' � could bring immense insight in understanding the laws and structure of universal matter in its most fundamental form," said lead author Valery Kubarovsky, a Research Scientist at Rensselaer Polytechnic Institute in Troy, N.Y.

The research was carried out at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) by the CLAS (CEBEF Large Acceptance Spectrometer) collaboration, which consists of physicists from universities and laboratories in seven nations.

Nearly all matter on Earth is held in the nuclei of atoms. An atomic nucleus is composed of protons and neutrons, with the number of protons determining the chemical element.

In the last four decades, physicists have discovered that these subatomic particles are composed of even smaller particles, called quarks, which are held together by a strong nuclear force called "glue." Each proton and neutron is composed of three quarks, for example.

For years, scientists have predicted that five-quark particles also could exist under unusual conditions. Yet, no proof surfaced until late 2002 when a Japanese team announced its discovery of the pentaquark in particle-smashing experiments.

When the researchers zapped carbon atoms with high-energy gamma rays, they observed that, after gamma ray photons "crashed" into the neutrons, a few neutrons "grew" into five-quark particles. The Jefferson Lab team then corroborated this finding using a deuteron target.

The team announced the initial discovery of a pentaquark on a proton target at an international physics conference in New York City in May 2003. The findings were soon corroborated by researchers at Bonn University in Germany. Kubarovsky presented the CLAS team's results at the first conference on pentaquarks, hosted by Jefferson Lab in November 2003.

Still, the results of subsequent experiments by researchers globally have been mixed until now.

"Detection is difficult because we are unable to 'see' the pentaquark itself, which lives less than one hundredth of a billionth of a billionth of a second, before decaying into two separate particles," said Paul Stoler, Rensselaer physics professor and chair of the Jefferson Lab Users Board of Directors.

"But even the two-particle, tell-tale sign is difficult to detect because of the many irrelevant reactions, or 'debris,' that also occur in the same experiments."

To limit the debris, CLAS team members searched for a simpler mode of production. Since they could not isolate a single neutron � stable neutrons cannot exist freely � they turned to the single proton as a target.

One proton makes up the entire nucleus of the simplest element known in the universe: hydrogen. In the experiment, the Jefferson Lab team liquefied the hydrogen at a temperature that reached a few degrees above absolute zero before zapping the element with gamma rays.

"Shifting our focus from neutrons to protons dramatically altered our results," Kubarovsky said. "We strongly increased the previous success rates for detecting pentaquarks."

According to CLAS researchers, further experimentation is needed to increase the pentaquark detection rate per particle explosion, to better understand the details of how the pentaquark is produced, and its internal characteristics. Several follow-up experiments will be conducted at Jefferson Lab within the next year.

"Consider that, out of several billion collisions, scientists have found a few dozen pentaquarks. We need to find at least a thousand events that result in the creation of pentaquarks to have more valuable information on the nature of this new state of matter," Kubarovsky says. "Right now we have a sample of about 45, which is the most significant in the world."

Related Links
Rensselaer Polytechnic Institute
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

A Supercool Focus For Space Science In Cardiff
Cardiff - Nov 27, 2003
A multi-million pound investment in laboratories at Cardiff University has created a new national focus for space science and technology research, supporting the scientists who are investigating how the primordial fluctuations of the Universe developed after the Big Bang into the stars and galaxies we see today.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.