. 24/7 Space News .
Study Finds Advantages To Iron Nanoparticles For Environmental Clean Up

Oregon Health & Sciences University doctoral student James Nurmi prepares to measure the reactivity of a packed pellet of nano iron particles using an electrochemical technique. Photo: Matt Sachs.
Portland OR (SPX) Jan 17, 2005
Researchers at Oregon Health & Science University's OGI School of Science & Engineering, in collaboration with Pacific Northwest National Laboratory (PNL) and the University of Minnesota, have discovered that at least one type of nano-sized iron may be useful in cleaning up carbon tetrachloride contamination in groundwater.

The new discovery was published online (http://dx.doi.org/10.1021/es049190u) Dec. 16, 2004, in Environmental Science & Technology, the leading environmental journal of the American Chemical Society. The study will be published in the print version of Environmental Science & Technology, March 1, 2004, in a special section on nanotechnology.

"The use of nano-sized particles of iron for cleaning up contaminants in groundwater, soil and sediments is one of the hottest new technologies to emerge in recent years," said Paul Tratnyek, Ph.D., an environmental chemist and professor of environmental and biomolecular systems at OHSU's OGI School of Science & Engineering, and a lead author of the study.

"However, there are a lot of unanswered questions about the appropriate and optimal implementation of the nano-iron technology, and even some questions about its safety. We set out to answer some of the remaining questions that researchers have about the basic chemical processes that determine the fate and effects of metal nanoparticles in the environment."

The particles studies by Tratnyek and colleagues range in size from 10 to 100 nanometers. One nanometer is one-billionth of a meter. By comparison, many biomolecules are of similar size.

For the study, Tratnyek and his doctoral students James T. Nurmi and Vaishnavi Sarathy compared two leading types of nanoparticle-sized iron that are being promoted by others for groundwater remediation.

They measured how fast these particles degrade carbon tetrachloride and they determined the major projects of the reaction.

Carbon tetrachloride is a manufactured chemical used mainly in cleaning fluids and degreasing agents. In a few locations, spills of these liquids infiltrated the soil and created very large areas of contaminated groundwater and soil. Carbon tetrachloride is a toxic chemical that has been shown to cause cancer in animals.

The research at OHSU was funded in part by a grant from the Department of Energy to the Pacific Northwest National Laboratory (PNL) in Richland, Wash. The interdisciplinary team includes 10 researchers from PNL, three from OHSU and two from the University of Minnesota.

The PNL researchers, led by Donald R. Baer, Ph.D., technical group leader at PNL's William R. Wiley Environmental Molecular Sciences Laboratory, first synthesized and characterized the nanoparticles using a variety of advanced microscopy and spectroscopy techniques.

Once the nanoparticles were syntheisized and characterized, Tratnyek and his students studied their reactivity using electrochemical techniques they developed to help them systematically measure the microscopic particles. University of Minnesota scientists also helped with microscopy and some reactivity studies.

"Our team's study results show how the breakdown of carbon tetrachloride is influenced by some very subtle and transient differences between the two types of nano-iron," said Tratnyek.

One of the nano-irons studied, a commercially available product of iron oxide with a magnetite shell high in sulfur, quickly and effectively degraded carbon tetrachloride to a mixture of relatively harmless products.

"This was an exciting find because it may provide the basis for effective remediation of real field sites with groundwater that is contaminated with carbon tetrachloride," said Tratnyek.

"Furthermore, since it may be possible to emplace nano-sized iron deep into the subsurface by injecting it through deep wells, this approach may be suitable for remediation of very deep plumes of carbon tetrachloride contaminated groundwater, such as the one at the Hanford site in Richland, Washington."

The other nano-iron studied by the OHSU-PNL-University Of Minnesota team had a shell, or coating, high in oxidized boron. While the oxide-coated iron also rapidly degraded the carbon tetrachloride, the primary product was chloroform, a toxic and persistent environmental contaminant.

"The idea of using nanosized particles of iron for cleanup of groundwater contaminants has been around since 1997 and has gained a lot of momentum in the past four years," noted Tratnyek. "Nanotech iron has shown promise for environmental remediation, but previous work has not been particularly rigorous or thorough.

"Our report is the most comprehensive and rigorous characterization of the reaction to date between carbon tetrachloride and two leading types of nano-sized iron. We have taken a careful, second look at the chemistry of nano-iron for environmental cleanup in hopes of providing better science on which to found this promising technology."

Tratnyek's nano iron research may also someday have medical applications, for instance, in the diagnosis of brain tumors.

Related Links
Oregon Health & Science University
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Study Shows Nanoshells Ideal As Chemical Nanosensors
Houston TX (SPX) Jan 13, 2005
New research published in the Proceedings of the National Academy of Science finds that tailored nanoparticles known as nanoshells can enhance chemical sensing by as much as 10 billion times.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.