. 24/7 Space News .
Nanoscale Optimizes Adhesion

The optimal shape of adhesion for two objects in contact over a prescribed surface area is defined as such that the stress distribution is uniform and equal to the theoretical adhesion strength of molecular (e.g., van der Waals) interaction at pull-off. Robust optimal adhesion is achieved when the contact size is reduced to around 100 nanometers. At this critical size scale, the adhesion strength becomes insensitive to small deviations from the optimal shape. Image: Max Planck Institute for Metals Research
Germany (SPX) May 26, 2004
The nanometer size of hairs (spatulae) on the feet of geckos and many insects may have evolved to optimize adhesion strength, according to new research conducted at the Max Planck Institute for Metals Research in Stuttgart.

The scientists discovered that there exists an optimal shape of the contact surface of the tip of such hairs which gives rise to optimal adhesion to a substrate via molecular interaction forces.

For macroscopic objects, such optimal shape design tends to be unreliable because the adhesion strength is sensitive to small geometrical variations. It is shown that this limitation can be remedied via size reduction.

The key finding of this research is that there exists a critical contact size around 100 nanometers below which optimal adhesion can be reliably achieved independent of small variations in the shape of the contact surface. In general, optimal adhesion can be achieved by a combination of size reduction and shape optimization. The smaller the size, the less important the shape.

This result provides a plausible explanation why the characteristic size of hairy attachment systems in biology fall in a narrow range between a few hundred nanometer and a few micrometers and suggests a few useful guidelines for designing adhesive structures in engineering.

Welding, sintering, diffusion bonding and wafer bonding are some of the widely used engineering strategies of joining different structural components or objects together. Normally, if two objects are joined together by adhesion and then subject to an externally applied load, stress concentration is expected to occur near the edge of the joint.

As the load increases, the stress intensity ultimately reaches a critical level to drive a small crack to propagate and break the joint. Under these circumstance, the material in the joint is not being used most efficiently because only a small fraction of material is highly stressed at any instant in time.

The failure occurs by incremental propagation of crack-like flaws. How to achieve robust and reliable optimal adhesion between different structural components has so eluded engineers.

Biological adhesion mechanisms that have been tested and improved through evolution are of interest not only to biologists but also to engineers. Geckos and many insects have adopted nanoscale hairy structures on their feet as adhesion devices. The density of surface hairs increases with the body weight of animals, and the gecko has the highest density among all animal species that have so far been studied.

Different mechanisms, such as capillary forces, have been proposed in the past to explain adhesion mechanisms in biology. However, there is now strong evidence that molecular adhesion via van der Waals interaction plays a dominant role in the attachment of geckos.

This may appear somewhat surprising because it takes a much greater force to pull a gecko away from a ceiling than removing a human hand off a table, even though the same van der Waals force is expected to exist in both situations.

A question thus arises: What determines the adhesion strength? The chemical nature of materials cannot explain why the same van der Waals force results in strong adhesion in gecko but not in human. Apparently, nature has evolved mechanisms to utilize weak van der Waals forces in animal species for which adhesion is crucial for survival.

Related Links
Max Planck Institute for Metals Research/Gorb
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Scaling Friction Down To The Nano/Micro Realm
 Washington - May 25, 2004
An improved method for correcting nano- and micro-scale friction measurements has been developed by researchers at the National Institute of Standards and Technology (NIST). The new technique should help designers produce more durable micro- and nano-devices with moving parts, such as tiny motors, positioning devices or encoders.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.