. 24/7 Space News .
Purdue's Self-Assembled 'Nanorings' Could Boost Computer Memory

Shown are cobalt nanoparticles that have self-assembled into bracelet-like "nanorings." The rings' magnetic flux can be oriented in one of two directions � clockwise or counterclockwise � a characteristic that could represent binary numbers in magnetic memory devices. Because the flux direction remains even without a constant power supply, it is possible these rings could lead to so-called "non-volatile" computer memory, which would not be wiped out in the event of a system failure. (Graphic/VCH Publishers)
 West Lafayette - Dec 11, 2003
Recent nanotechnology research at Purdue University could pave the way toward faster computer memories and higher density magnetic data storage, all with an affordable price tag.

Just like the electronics industry, the data storage industry is on the move toward nanoscale. By shrinking components to below 1/10,000th the width of a human hair, manufacturers could make faster computer chips with more firepower per square inch. However, the technology for making devices in that size range is still being developed, and the smaller the components get, the more expensive they are to produce.

Purdue chemist Alexander Wei may have come up with a surprisingly simple and cheap solution to the shrinking data storage problem. Wei's research team has found a way to create tiny magnetic rings from particles made of cobalt. The rings are much less than 100 nanometers across � an important threshold for the size-conscious computer industry � and can store magnetic information at room temperature. Best of all, these "nanorings" form all on their own, a process commonly known as self-assembly.

"The cobalt nanoparticles which form the rings are essentially tiny magnets with a north and south pole, just like the magnets you played with as a kid," said Wei, who is an associate professor of chemistry in Purdue's School of Science. "The nanoparticles link up when they are brought close together. Normally you might expect these to form chains, but under the right conditions, the particles will assemble into rings instead."

The research appeared as a "Very Important Paper" in the November issue of the chemistry journal Angewandte Chemie. Wei collaborated with lead author Steven Tripp and Rafal Dunin-Borkowski, an electron microscopist at the University of Cambridge.

The magnetic dipoles responsible for nanoring formation also produce a collective magnetic state known as flux closure. There is strong magnetic force, or flux, within the rings themselves, stemming from the magnetic poles each particle possesses. But after the particles form rings, the net magnetic effect is zero outside. Tripp developed conditions leading to the self-assembly of the cobalt nanorings, then initiated a collaboration with Dunin-Borkowski to study their magnetic properties. By using a technique known as electron holography, the researchers were able to observe directly the flux-closure states, which are stable at room temperature.

"Magnetic rings are currently being considered as memory elements in devices for long-term data storage and magnetic random-access memory," Wei said. "The rings contain a magnetic field, or flux, which can flow in one of two directions, clockwise or counterclockwise. Magnetic rings can thus store binary information, and unlike most magnets, the rings keep the flux to themselves. This minimizes crosstalk and reduces error during data processing."

When you turn on your computer, it loads its operating system and whatever documents you are working on into its RAM, or random-access memory. RAM is fast, enabling your computer to make quick changes to whatever is stored there, but its chief drawback is its volatility � it cannot perform without a continuous supply of electricity. Many people have experienced the frustration of losing an unsaved document when their computer suddenly crashes or loses power, causing all the data stored in RAM to vanish.

"Nonvolatile memory based on nanorings could in theory be developed," Wei said. " For the moment, the nanorings are simply a promising development."

Preliminary studies have shown that the nanorings' magnetic states can be switched by applying a magnetic field, which could be used to switch a nanoring "bit" back and forth between 1 and 0. But according to Wei, perhaps the greatest potential for his group's findings lay in the possibility of combining nanorings with other nanoscale structures.

"Integrating the cobalt nanorings with electrically conductive nanowires, which can produce highly localized magnetic fields for switching flux closure states, is highly appealing." He said. "Such integration may be possible by virtue of self-assembly."

Several research groups have created magnetic rings before but have relied on a "top-down" manufacturing approach, which imposes serious limitations on size reduction.

"The fact that cobalt nanoparticles can spontaneously assemble into rings with stable magnetic properties at room temperature is really remarkable," Wei said. "While this discovery will not make nonvolatile computer memory available tomorrow, it could be an important step towards its eventual development. Systems like this could be what the data storage industry is looking for."

Wei's group is associated with the Birck Nanotechnology Center, which will be one of the largest university facilities in the nation dedicated to nanotechnology research when construction is completed in 2005. Nearly 100 groups associated with the center are pursuing research topics such as nanometer-sized machines, advanced materials for nanoelectronics and nanoscale biosensors.

Related Links
Purdue University
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Kettering Researchers Discover New Way to Produce Nanotubes
Flint - Dec 08, 2003
Nanotubes have thermal conductivity better than diamonds, electro-conductivity better than copper, and can withstand very high temperatures. Researchers at Kettering University have discovered a different method for producing nanotubes, which is one of the U.S. government's best-funded technology areas.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.