. 24/7 Space News .
Plants Provide Model For New Shape-Changing Materials

Artist's rendering. The 'morphing wing' concept includes a variety of smart technologies, and synthetic materials, that could enable inflight configuration changes for optimum flight characteristics. Credit: NASA
by Lynn Nystrom
Blacksburg VA (SPX) Oct 05, 2004
Over the next 17 months, Virginia Tech will lead a team of researchers exploring the development of a new class of materials that will use plant protein structures in an attempt to mimic biological systems. The Defense Science Office of the Defense Advanced Research Project Agency (DARPA) is funding the $2.1 million project.

DARPA is specifically interested in a group of hard polymers called nastic materials. In biology, nastic refers to the natural movement of plants in response to changes in their environment, such as plants that track the sunlight or that stiffen when watered.

These movements are caused by changes in the water pressure inside the plant and can result in very large changes in shape.

The goal of the DARPA project, administered by John Main, is to develop synthetic materials that utilize internal pressure changes to cause large shape changes.

The plan calls for the investigation of the protein structures of plants for the purpose of understanding their role in generating shape changes in natural materials.

The protein structures under analysis would then be used to develop a synthetic material that incorporates properties that produce controllable shapes.

Ultimately, successful development of the nastic structure concept will provide a new class of materials based on the direct conversion of biochemical energy into mechanical work.

In this manner it will provide a truly integrated "smart" material that serves as the foundation for a new generation of biologically inspired engineering systems.

In this unique program, researchers will be working with a company on the application of nastic materials to a morphing aircraft wing. This wing would dynamically change its shape and control surfaces during flight.

An analogy would be a hawk that is soaring through the sky, suddenly sees its prey, and changes its shape to make a dive towards the intended victim. As the raptor changes gear to fly southward at lightening speed, it must sense what the outside forces and pressures are for its trajectory.

Similarly, for an aircraft wing, engineers would need a material that's mechanically flexible. But the designers also need a material with a surface that's controlled by sensors and electrical conductors that allow it to do that sensing and change shape accordingly. Properly engineered nastic materials might allow sensors that can be flexed.

Don Leo, professor of mechanical engineering and a member of the Center for Intelligent Materials Systems and Structures (CIMMS) at Virginia Tech, is the principal investigator on this project.

His colleagues are: Dr. John Cuppoletti, College of Medicine, University of Cincinnati; Subhash Narang, SRI International, Palo Alto, Cal.; Jay Kudva, NextGen Aeronautics Inc., Torrance, Cal.; and Victor Giurgiutiu, Department of Mechanical Engineering, University of South Carolina.

At Virginia Tech, Leo will be working with Tim Long, professor of chemistry, and Lisa Weiland, currently a research scientist at CIMMS who will soon be joining the University of Pittsburgh's mechanical engineering department.

This highly interdisciplinary team has expertise in molecular biology, polymer chemistry, structural modeling and control, fabrication methodologies, and systems integration required for this program.

"As we generate materials that will feature internal pressures that allow the nastic structures to expand and contract, we hope to move on from the morphing wings to other applications that require structures that can produce large shape changes. An example might be a compact container that will deploy into an antenna after it is transported to a particular location," Leo said.

"Biological systems are excellent templates for the development of high-performance engineering platforms. An understanding of how biological systems move, adapt, communicate, and replicate are providing scientists and engineers with novel approaches to engineering problems.

These solutions are producing a revolution in engineering design through the application of biological principles to the design of new autonomous engineering systems," Leo said.

Virginia Tech began working in the smart materials area in the 1980s, attempting to engineer materials and systems that reflect nature. CIMMS, directed by Dan Inman, who holds the George Goodson endowed professorship, has an international reputation in the smart materials arena.

Related Links
Virginia Tech
University of Pittsburgh
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

New Format Could Store All Of Homer's Life On One Optical Disk
London, UK (SPX) Sep 28, 2004
Physicists at Imperial College London are developing a new optical disk with so much storage capacity that every episode of The Simpsons made could fit on just one. Speaking at the Asia-Pacific Data Storage Conference 2004 in Taiwan today, Dr Peter Torok, Lecturer in Photonics in the Department of Physics, will describe a new method for potentially encoding and storing up to one Terabyte (1,000 Gigabytes) of data, or 472 hours of film, on one optical disk the size of a CD or DVD.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.