. 24/7 Space News .
New Computational Method Could Speed Metallic Glass Design

Illustration only
Pittsburgh PA (SPX) Aug 31, 2004
Want a tennis racket that propels balls faster than a race car or a sturdy ship hull that never rusts? Finding the recipes for such remarkable materials � called amorphous metals � should be easier using a new computational approach developed by Carnegie Mellon University physicist Michael Widom.

Described in an upcoming issue of Phys. Rev. B (September 1, 2004), this method already has been used to virtually generate recipes for more than 1,700 structures, many of which have never before been analyzed.

The novel approach should prove valuable in guiding future bench testing and sparing countless hours of laboratory trial and error to generate amorphous metals.

Alloys for everyday materials like stainless steel are made by combining a metal with other elements. The resulting metals crystallize into lattices in which atoms line up in orderly arrangements.

Defects in these crystals inevitably weaken materials made from them, leading to fractures and corrosion.

Amorphous metals, otherwise known as metallic glass, lack these defects because they are disordered materials essentially frozen in place.

Consequently, they display remarkable corrosion resistance, strength and elasticity � the "spring-like" property coveted by tennis and golf champions.

Despite their promise, only small quantities of metallic glass have been generated to date because heated alloys require rapid cooling to freeze a glass into place.

Quick, uniform cooling of a large quantity of material is difficult, given that elements like to combine with one another in energetically favorable combinations, resulting in impurities that crystallize in an amorphous glass as it cools.

Using the new computational method, developed by Widom, scientists now can virtually predict what structures will crystallize out of an amorphous metal as it cools and how "spicing" a mixture with new elements prevents the emergence of these impurities.

Widom and his colleagues, including Yang Wang from the Pittsburgh Supercomputing Center, Marek Mihalkovic from the Slovakian Academy of Sciences and Don Nicholson from Oak Ridge National Laboratory, used powerful computing to systematically mix different amounts of elements in iron alloys and identify potential metallic glass compositions.

"Our method allows us to calculate energies associated with the formation of stable crystalline structures within these alloys," said Widom, a professor of physics.

These energies reflect the drive different element compositions have to crystallize out of an amorphous glass.

"We can identify an unstable mixture to quench into a glass, see what nearby structures are likely to crystallize out, and thwart their formation," he added.

Given this information, Widom then can virtually add new elements to an alloy recipe and see how they "confuse" the tendency of crystals to form.

"Metallic glass is not the most natural state to form as an alloy cools. To make it easy to form glass you want to rearrange things so that the crystalline alternatives are less likely to result," said Widom.

In work to date, Widom already has generated several potential glass alloy mixtures and has shown that "spicing" an iron alloy mixture with a small amount of the large element Yttrium facilitates metallic glass production.

Independent laboratory research at University of Virginia and at Oak Ridge National Laboratory confirms this finding.

"Ultimately, we would like to identify candidate mixtures that could be cooled in bulk to form novel metallic glasses," he said.

The new approach is sound, according to Widom, who has used it to propose structures for previously unsolved compounds and also has shown that it generates findings that match experimentally produced results, where they are available.

While this approach is highly promising to study iron-based metallic glasses that could be used in structures such as ship hulls, it also could be used to evaluate metallic glasses made from other alloys.

These include aluminum-based mixtures that could yield lightweight, stress-resistant metallic glasses for airplanes.

This research is supported by a three-year, $5.5 million grant from DARPA shared with others at University of Virginia, Oak Ridge National Laboratory and the Pittsburgh Supercomputing Center. All the data generated to date are available online at http://alloy.phys.cmu.edu

Related Links
Carnegie Mellon University
Pittsburgh Supercomputing Center
University of Virginia
Oak Ridge National Laboratory
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Laboratory Advances The Art And Science Of Aerogels
Los Alamos NM (SPX) Aug 27, 2004
University of California scientists working at Los Alamos National Laboratory have recently demonstrated a novel method for chemically modifying and enhancing silica-based aerogels without sacrificing the aerogels unique properties.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.