. 24/7 Space News .
Light-Activated Glue Holds And Releases Workpieces In A Flash

A quick zap of low intensity ultraviolet light from a UV spot lamp delivered through the gripper pins causes the adhesive to set and form strong, tough, stiff bonds with the workpiece in seconds. The yield strength of the cured adhesive bond is greater than 5500 pounds per square inch.
University Park PA (SPX) Aug 18, 2004
Penn State engineer has developed a new technology that uses light-activated glue to hold workpieces in position for machining, grinding and other manufacturing processes.

Dr. Edward De Meter, professor of industrial and manufacturing engineering, who developed the concept, says, "This new technology offers an alternative to mechanical clamping, the approach industries most often use."

"Capital investment for automated clamping is typically high and mechanical clamps can deform the workpiece, impede the manufacturing process and occupy processing space that could otherwise be used to hold additional workpieces."

"Adhering workpieces to a fixture avoids these problems and can lead to significant improvements in manufacturing productivity, part quality and part cost."

In the new approach, the workpiece is anchored to a steel fixture that conforms to the underside of the workpiece. At strategic locations on its surface, the fixture has holes capped with small, round, raised pads made of commercial sapphire, a relatively inexpensive ceramic material.

These pads, which De Meter calls gripper pins, act as lenses or windows for ultra violet or infrared light used to set or destroy glue anchoring the workpiece.

To load a workpiece, dabs of adhesive are placed on the gripper pins and the workpiece is put on top.

A quick zap of low intensity ultraviolet light from a UV spot lamp delivered through the gripper pins causes the adhesive to set and form strong, tough, stiff bonds with the workpiece in seconds. The yield strength of the cured adhesive bond is greater than 5500 pounds per square inch.

When machining or other processing is completed, infrared light delivered by a laser through the gripper pins destroys the adhesive bonds and releases the workpiece. The laser blast destroys the adhesive bonds in a fraction of a second without heat transfer to the fixture or the workpiece.

De Meter says, "The adhesive that we use with our prototype is a commercially available product used for a variety of assembly operations in the electro-optics industry.

"We add pigment to the adhesive so that it absorbs infrared light when hit with the laser," he explains.

"The pigment enbrittles the adhesive and causes its yield strength to drop below 300 pounds per square inch. Usually the workpiece can be released from the fixture by hand or with a gentle tap from a rubber mallet."

De Meter notes that vacuum chucks and magnetic clamps are currently available as alternatives to mechanical clamping. However, vacuum chucks can only handle light loads and magnetic clamps can only function with workpieces made from iron-containing materials.

Light Activated Adhesive Gripper (LAAG), as De Meter calls the new workholding technology, enables a much wider variety of workpieces to be held, especially those originated as castings and forgings.

The research on the new technology was supported, in part, by a Special Grant for Exploratory Research from the National Science Foundation.

The University has a patent pending on the new technology and it will be showcased by Penn State and Masterworkholding, a company that has optioned the intellectual property, at the International Machine Tool Show (IMTS) in Chicago, Ill. from Sept. 8 to 15.

Related Links
Penn State
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Carbon Nanotubes Eliminate Manufacturing Woe
Gaithersburg MD (SPX) Aug 16, 2004
Researchers at the National Institute of Standards and Technology (NIST) have discovered that the addition of carbon nanotubes to a common commercial polymer, polypropylene, leads to dramatic changes in how the molten polymer flows.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.