. 24/7 Space News .
Superconductor By The Kilometer

Superconducting tape can carry 200 times the electrical current of an equivalent copper wire
Los Alamos - Dec. 4, 2000
Researchers in the Superconductivity Technology Center of the Department of Energy's Los Alamos National Laboratory have developed a new process for producing high-performance superconducting tape that operates at the temperature of liquid nitrogen.

When scaled up to commercial production, the Los Alamos process will enable industry to manufacture long lengths of this tape - at a rate of kilometers per day - for myriad electric power applications.

Superconducting tapes can efficiently carry vast amounts of electrical current with no resistive losses. A single, one-centimeter-wide, thin foil of Los Alamos superconducting tape exhibits a current density - the amount of electrical current that can be passed through a cross section of the material - of more than one million amps per square centimeter. This means a single piece of superconducting tape can carry 200 times the electrical current of an equivalent copper wire.

As the world market for superconducting tape in electric power technologies - projected up to $50 billion by the year 2020 - is realized, tremendous energy savings and emission reductions also will result, said Dean Peterson, director of Los Alamos' Superconductivity Technology Center.

"Electric motors, transformers, transmission cables and levitated trains will be some of the applications demanding hundreds of kilometers of these flexible superconducting tapes each year," said Peterson.

The latest achievement was attained by replacing cubic zirconia with magnesium oxide as the template material for the superconducting film, thereby speeding up the template deposition process by 100 times.

Said James Daley, manager of the Superconductivity Program for Electric Systems for DOE, "Being able to reduce the fabrication time in a continuous process will increase U.S. industry interest in scaling-up the manufacturing process and in bringing new products to market more quickly."

Los Alamos researchers in 1995 achieved world-record performance by depositing a film of a superconducting ceramic, known as yttrium barium copper oxide or YBCO, on inexpensive nickel alloy tape by first applying a buffer layer of cubic zirconia. The zirconia layer was deposited using ion beams in a process known as Ion Beam Assisted Deposition.

The first beam removes material from a zirconia target and deposits it onto the nickel tape. A second ion beam, aimed at the tape, orients zirconia grains as they are deposited.

Subsequent pulsed-laser deposition of YBCO on top of the aligned zirconia template allows growth of a nearly perfect crystalline superconducting film from one to six millionths of a meter thick.

Extending this Ion Beam Assisted Deposition-pulsed-laser deposition approach in a continuous process, Los Alamos researchers were able to produce meter lengths of YBCO superconducting tapes with critical current exceeding 100 amps and current densities of one million amps per square centimeter at liquid nitrogen temperatures.

"None of the competing processes for producing coated conductors have succeeded in achieving such results on long tapes," said Peterson.

Magnesium oxide addresses the need for a fast and reliable template formation process that is required to produce the high-performance YBCO-coated conductors economically.

It also permits timely manufacturing of kilometers of high-performance superconductor tape that will enable the development of an array of energy-conserving and more powerful electrical technologies for use in the electric power industry.

Los Alamos researchers have also recently made the exciting discovery that superconductor multilayers carry unprecedented amounts of current - potentially 1,000 amperes in a one-centimeter-wide strip through a coating only one tenth the thickness of a human hair.

This new film deposition technology is now being incorporated in producing superconducting tapes with superior current carrying ability.

To accelerate commercial development of high-temperature superconducting tape, Los Alamos is collaborating with American Superconductor Corp., 3M Corp. and Intermagnetics General Corp.

Los Alamos' Superconductivity Technology Center is one of three national centers funded by the Department of Energy to develop high-temperature superconductor technologies in collaboration with American industry and universities.

Related Links
American Superconductor Corp
HTS at Los Alamos
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Eliminating Noise In Subspace
Los Alamos - Oct. 30, 2000
Scientists at the U.S. Department of Energy's Los Alamos National Laboratory have taken another step forward in the quest for a quantum-based computer by demonstrating the existence of a physical state immune to certain types of information-corrupting "noise," which could otherwise disrupt computations based on quantum states. The research appears in a recent issue of the journal Science.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.