Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters




The EETA 79001 meteorite was found in Elephant Morraine in the Antarctic, and was the first meteorite found during the 1979-1980 collecting season. EETA 79001 is classified as a shergotite, the most common subgroup of the Mars meteorites. EETA 79001 weights 7,900 grams (17.4 pounds), and is the second largest Mars meteorite ever found - only the Zagami meteorite is larger. EETA 79001 is only 180 million years old - very young on the solar system scale - and was launched into space from Mars 600,000 years ago.
Martian Meteorites Reveal Clues To Atmospheric Processes
by Kim McDonald
San Diego - March 1, 2000 - Detailed measurements of sulfur isotopes in five Martian meteorites have enabled researchers at the University of California, San Diego to determine that the abundant sulfur on the surface of Mars is due largely to chemical reactions in the Red Planet's atmosphere that are similar to those that occur in Earth's atmosphere.

Their conclusions, which are detailed in a paper in the March 2 issue of Nature, also suggest that the variations in sulfur isotopes found on ALH84001, the Martian meteorite thought by some scientists to contain evidence of ancient Martian life, are not due to biological processes.

Instead, the UCSD researchers say, the chemical processes that produced the variations in sulfur isotopes on many of the bits of rock that were blasted from the surface of Mars millions of years ago and eventually recovered on Earth appear to be purely inorganic-that is, non-biologic.

"On Earth, if you see a large variation in the sulfur isotope ratio, it generally, though not exclusively, means you've got a biogenic input," said Mark H. Thiemens, professor of chemistry and biochemistry and dean of the Division of Natural Sciences at UCSD. "Organisms are very good at separating isotopes and choosing one over the other. So when you see big changes in isotope ratios, it often means biochemistry."

On Earth, such changes are often produced by terrestrial bacteria that derive their energy solely from the conversion of sulfur compounds from one form to another. In so doing, they selectively break the chemical bonds of the lighter isotopes of sulfur, producing large variations in the normal sulfur-isotope ratio.

In their laboratory, Thiemens and UCSD researchers James Farquhar, Joel Savarino and Terri L. Jackson sought to find out whether some of this sulfur may have been produced by organisms. They also examined the sulfur in the Martian meteorites to find clues to the evolution of the Martian atmosphere, a major puzzle for planetary scientists.

"Sulfur and a number of other elements are involved in the chemical and physical cycling of elements between oceans, rocks, living organisms and the atmosphere," said Farquhar, the principal author of the study.

"We have shown that the sulfur-isotope ratios in Martian meteorites have a component that can only be explained by atmospheric chemical reactions. This provides new insights into the origin of sulfur species found at the Viking and Pathfinder landing sites, and into sulfur mobility within the Martian surface," added Farquhar.

"Mars is a nice case study, because it's relatively simple," explained Thiemens. "There's not that much atmosphere, it's photochemical, it couples directly to the surface and it's not complicated by biology or an ocean. Sulfur is a major element and it has a number of isotopes, so it's a very nice probe to understand an entire planetary system."

The UCSD researchers' measurements of sulfur isotopes in reduced and oxidized phases, which were supported by the National Aeronautics and Space Administration, are the first from a group of Martian meteorites, known as SNC meteorites.

Only about a dozen of these rare meteorites have been recovered over the past two centuries. Farquhar and his colleagues examined samples of five meteorites in this group, including a 1.3 billion-old-year Martian rock that reputedly killed a dog when it fell to Earth in 1911 near Nakhla, Egypt and a 165-million-year-old chunk of the Red Planet that fell near Shergotty, India in 1865.

The UCSD scientists said the isotopic variations in those meteorites, combined with what is known about the Martian atmosphere from the Viking landers, are best accounted for by inorganic chemical reactions in the atmosphere, not biological processes.

"When you put them all together to account for the data, it fits," said Thiemens. "Biology can't accommodate what we see, but the photochemistry in the Martian atmosphere does." The UCSD researchers will also present their results later this month at the Lunar and Planetary Science Conference, scheduled for March 13-17 in Houston.

  • Mars Meteorites

    MARS INVADES EARTH

    A Mars meteorite stone (shergottite) weighing 452.6 grams. A 1 cm square cube is shown for scale. Photo 2000 Ron Baalke
    New Mars Meteorite Found In California
    Pasadena - January 31, 2000
    I'm very pleased to report on a new Mars meteorite find by a good friend and fellow meteorite collector, Bob Verish. The meteorite was found somewhere in the Mojave Desert in California, and consists of two stones of 452.6 & 245.4 grams. The two rocks have been classified as Mars meteorites, specifically basaltic shergottites, by analysis done at UCLA. The new meteorite's official name is the Los Angeles meteorite.




    Thanks for being here;
    We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

    With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

    Our news coverage takes time and effort to publish 365 days a year.

    If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

    SpaceDaily Contributor
    $5 Billed Once


    credit card or paypal
    SpaceDaily Monthly Supporter
    $5 Billed Monthly


    paypal only






    Memory Foam Mattress Review
    Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
    XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.