. 24/7 Space News .
Martian Life Would Need A Dose Of Antioxidants

Evidence of life might exist beneath the surface or in the interiors of rocks that are protected from the superoxide ions. What we don't know is how far below the surface we would need to look.
Pasadena - Sept. 22, 2000
Intense ultraviolet radiation that pierces Mars' thin atmosphere produces an abundance of oxygen ions, a common free radical, at the Martian surface that destroys organic molecules - - the building blocks of life -- according to researchers at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

Scientists have been puzzled since the mid-1970s when NASA's Viking landers failed to find any organic materials, not even traces delivered to Mars by meteorites.

That discovery led scientists to recognize that there were oxidants in the Martian soil capable of destroying organic molecules. It has taken until now for a team to come up with a comprehensive idea of what those oxidizing chemicals are and how they form.

"We simulated the Martian surface environment in our laboratory and found that the combination of ultraviolet radiation, mineral grain surfaces, atmospheric oxygen and extremely dry conditions produce superoxide ions. This is all that is necessary to make the reactive component of soil," said Dr. Albert Yen, a JPL planetary scientist and lead author of the study being published in Science magazine on September 15.

This combination of surface conditions exists on Mars today and the superoxides are generated during daytime exposures to ultraviolet radiation.

"Our research does not address whether life ever formed on Mars, but it does give us more information about where to look for life or evidence of past life," Yen said.

"Evidence of life might exist beneath the surface or in the interiors of rocks that are protected from the superoxide ions. What we don't know is how far below the surface we would need to look."

"Determining how deep that oxidizing layer is on Mars is the most important next step in searching for life there," said Caltech Professor Bruce Murray, a co-author on the study.

The research team plans to study the movement of these oxygen radicals under simulated Martian conditions to estimate how deep they may be distributed. Future experiments to search for subsurface organic molecules could be carried out by penetrators and/or by drilling from a surface lander.

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

New Information Supports Claim Viking Discovered Life in 1976
San Diego - August 1, 2000
Hot on the heels of NASA's decision to land new rovers on Mars, the debate over the existence of life on the red planet is heating up. Dr. Gilbert V. Levin, a chief proponent, today advanced his claim to finding living microorganisms on the elusive planet 25 years ago.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.