. 24/7 Space News .
Researchers Determine Reason For Deadly Spread Of 1918 Influenza

illustration only
Chevy Chase - Feb 11, 2004
The explosive spread of the influenza virus during the 1918 pandemic that killed some 20 million people worldwide was likely enabled by the unique structure of a protein on the virus's surface, researchers are reporting. The newly determined structure of the viral protein reveals that the 1918 strain of influenza underwent subtle alterations that enabled it to bind with deadly efficiency to human cells, while retaining the basic properties of the avian virus from which it evolved.

According to the researchers, although their findings do not apply to the new virulent strain of avian flu that is threatening to spread, they do emphasize how subtle alterations in the influenza virus's infectivity could spawn a major epidemic.

The findings were the result of a long-term collaboration between the late Don Wiley, a Howard Hughes Medical Institute investigator at Harvard University who died in an accident in 2001, and Sir John Skehel of the Medical Research Council's National Institute for Medical Research in London. Their studies were published February 5, 2004, in ScienceExpress, the online version of the journal Science.

In their study, the researchers sought to understand the structure of the hemagglutinin protein, which covers the surface of the influenza virus and is known to initiate the first stages of viral infection. The protein does so by recognizing and binding to receptors on the cell surface that contain molecules called sialic acids. After hemagglutinin binds to these receptors, it causes pores to open in the human cells, allowing the virus to pass through.

According to Skehel, the researchers sought to understand how the 1918 version of hemagglutinin could bind to receptors on human cells, yet still retain many characteristics of its avian precursor virus.

"The 1918 virus was the first of this particular group of virus that caused a pandemic," said Skehel. He said that the hemagglutinin in the 1918 virus was designated H1, and the influenza viruses that caused later pandemics had distinctively different hemagglutinin structures � designated H2 for the Asian influenza that began in 1957 and H3 for the Hong Kong strain, which began in 1968. "What was interesting was that, although all three of these subtypes came from birds, the H1 was quite different from H2 and H3, having hardly changed from what it was in the avian virus," he said.

The researchers set out to explore this difference in detail, working from DNA sequence information that other researchers had gleaned from viral material isolated from autopsy samples preserved from the 1918 pandemic. Such scientific detective work was necessary because the virus had apparently gone extinct and had not been preserved in specimens from that era.

Using this sequence data, Wiley, Skehel, and their colleagues synthesized the gene for the H1 hemagglutinin and used it to produce the protein itself. They then crystallized the protein and used the analytical technique of x-ray crystallography to determine its structure.

"The structure revealed how this H1 group could still resemble the avian binding site, but nevertheless infect humans," said Skehel. "We found basically that two sides of the hemagglutinin receptor binding site are in slightly different positions in the 1918 hemagglutinin, in comparison with the Hong Kong protein," said Skehel. "This subtle difference allows the human receptor to bind in an antigenically favorable way."

According to Skehel, the hemagglutinin of the current strain of avian flu that has killed people in Asia exposed to infected birds is closer to that of the Hong Kong flu. "But presumably, what's blocking this current flu from spreading person-to-person is that its hemagglutinin structure has not yet evolved such that it can efficiently infect humans," said Skehel.

The researchers concluded that the hemagglutinin structure they uncovered for the 1918 virus may well have been a key contributor to its deadly spread. "With the ability to ensure the efficiency of the initial stages of virus infection, coupled with novel antigenicity, the human-1918 [hemagglutinin] may have been the prime determinant of extensive mortality in the 1918 pandemic," the researchers wrote in ScienceExpress.

Related Links
Hughes Medical Institute
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Oxygen Triggered The Evolution Of Complex Life Forms
London - Jan 29, 2004
Oxygen played a key role in the evolution of complex organisms, according to new research published in BMC Evolutionary Biology. The study shows that the complexity of life forms increased earlier than was thought, and in parallel with the availability of oxygen as an energy source.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.