Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



Natural Heat Vent Could Help Let Off Earth's Steam

A band of cirrus clouds produced by a westerly jet stream. NASA Shuttle image. Source Planetscapes
Greenbelt - Feb. 28, 2001
The tropical Pacific Ocean may be able to open a "vent" in its heat-trapping cirrus cloud cover and release enough energy into space to significantly diminish the projected climate warming caused by a buildup of greenhouse gases in the atmosphere.

If confirmed by further research, this newly discovered effect - which is not seen in current climate prediction models - could significantly reduce estimates of future climate warming. Scientists from NASA's Goddard Space Flight Center in Greenbelt, Md., and the Massachusetts Institute of Technology present their findings in the March 2001 issue of the Bulletin of the American Meteorological Society.

"High clouds over the western tropical Pacific Ocean seem to systematically decrease when sea surface temperatures are higher," says Arthur Y. Hou of Goddard's Data Assimilation Office. Hou and co-authors Ming-Dah Chou of Goddard's Climate and Radiation Branch and Richard S. Lindzen of MIT analyzed satellite observations over the vast ocean region, which stretches from Australia and Japan nearly to the Hawaiian Islands.

The researchers compare this inverse relationship to the eye's iris, which opens and closes to counter changes in light intensity. The "adaptive infrared iris" of cirrus clouds opens and closes to permit the release of infrared energy, thus resisting warmer tropical sea surface temperatures, which occur naturally and are predicted to increase as the result of climate warming.

The study compares detailed daily observations of cloud cover from Japan's GMS-5 Geostationary Meteorological Satellite with sea surface temperature data from the U. S. National Weather Service's National Centers for Environmental Prediction over a 20-month period (January 1998 to August 1999).

The researchers found that cumulus cloud towers produced less cirrus clouds when they moved over warmer ocean regions. For each degree Celsius rise in ocean surface temperature, the ratio of cirrus cloud area to cumulus cloud area over the ocean dropped 17-27 percent. The observed range of surface temperatures beneath the clouds varied by 6.3 degrees Fahrenheit (3.5 degees C).

The authors propose that higher ocean surface temperatures directly cause the decline in cirrus clouds by changing the dynamics of cloud formation and rainfall.

Cirrus clouds - high-altitude clouds of ice crystals - typically form as a byproduct of the life cycle of cumulus towers created by rising updrafts of heated, moist air.

As these cumulus convective clouds grow taller, cloud water droplets collide and combine into raindrops and fall out of the cloud or continue to rise until they freeze into ice crystals and form cirrus clouds.

"With warmer sea surface temperatures beneath the cloud, the coalescence process that produces precipitation becomes more efficient," explains Lindzen. "More of the cloud droplets form raindrops and fewer are left in the cloud to form ice crystals. As a result, the area of cirrus cloud is reduced."

Clouds play a critical and complicated role in regulating the temperature of the Earth. Thick, bright, watery clouds like cumulus shield the atmosphere from incoming solar radiation by reflecting much of it back into space.

Thin, icy cirrus clouds are poor sunshields but very efficient insulators that trap energy rising from the Earth's warmed surface. A decrease in cirrus cloud area would have a cooling effect by allowing more heat energy, or infrared radiation, to leave the planet.

If this "iris effect" is found to be a general process active in tropical oceans around the world, the Earth may be much less sensitive to the warming effects of such influences as rising greenhouse gas concentrations in the atmosphere.

The researchers estimate that this effect could cut by two-thirds the projected increase in global temperatures initiated by a doubling of carbon dioxide in the atmosphere.

American Meteorological Society is the nation's leading professional society for scientists in the atmospheric, oceanic, and related sciences.

Related Links
Goddard Space Flight Center
American Meteorological Society
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Uncertainty of Rapid Climate Change More Crucial than Ice Ages
San Francisco - Feb. 17, 2001
Climate always changes and what we are used to today is about as stable as climate gets, according to a Penn State glaciologist who has investigated climate records from both poles.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only






Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.