. 24/7 Space News .
Astronomers Link Old Stars And Mysterious Cosmic Explosions

Illustration of Swift
Pasadena CA (SPX) Dec 15, 2005
Cosmic gamma-ray bursts, the most powerful explosions in the universe, have the extreme brilliance of a billion billion Suns and occur several times a day. But they are not all created equal.

For several decades astronomers have known that two types exist - long ones that last for tens or hundreds of seconds, and short bursts, which last a few milliseconds to a second. Intense research over the last decade has shown that long bursts are the death throes of massive stars in distant, young, and vigorously star forming galaxies.

The origin of the short gamma-ray bursts, however, has been shrouded in mystery until now. Edo Berger, a Hubble post-doctoral fellow at the Carnegie Observatories, is lead author of the first study that accurately pinpoints a short gamma-ray burst to an old dead galaxy, implicating a population of old neutron stars as the sources of these explosions. The study appears in the December 15, 2005, issue of Nature.

"We had no idea if they explode in nearby galaxies, or the farthest reaches of the universe, or even what kind of object was producing them," stated Berger. "Now, after eluding us for years, we have finally found out what objects are giving rise to these explosions." he added.

Because short gamma-ray bursts are fainter than the long bursts, they have been very difficult to localize until recently, with the advent of NASA's Swift satellite and rapid follow-up by telescopes on the ground. Swift detects and observes gamma-ray bursts in multiple wavelengths and alerts astronomers who quickly point ground-based telescopes to catch the fading afterglow--the dying ember that glows for hours or days after the burst of gamma-rays.

In this study, Berger led a team that discovered and monitored the afterglow in radio, optical, and infrared wavelengths using telescopes at Carnegie's Las Campanas Observatory in Chile and the Very Large Array in New Mexico.They homed in on a gamma-ray burst (GRB 050724) localized by Swift on July 24 and found that the emission came from a fairly close (3.5 billion light-years) old elliptical galaxy.

"When the images came in from the telescope in the middle of the night I was shocked," said Berger." We finally determined a precise position for a short burst, and it happened in the most unlikely of places, an old dead galaxy." By the second night, the afterglow had completely faded away.

While long gamma-ray bursts result from the death of massive stars only a few million years old, the fact that the short burst occurred in an old elliptical galaxy, which has not formed new stars in several billion years, suggests that a completely different population of sources was at play. The objects giving rise to short bursts must be very old.

Theorists have long suspected that short gamma-ray bursts are the end product of a class of binary stars composed of two old neutron stars, or a neutron star and a black hole, which slowly approach each other as their orbit shrinks over hundreds of millions of years. This process results from the emission of gravitational waves, one of the major predictions of Einstein's theory of general relativity.

"Eventually, the two objects get so close together that they just shred each other apart in a cataclysmic explosion," said Tsvi Piran, a theoretical astrophysicist from Hebrew University in Israel and a co-author on the paper.

Because GRB 050724 is the first short burst with detections across the electromagnetic spectrum, the study reveals that the energy produced in the burst was channeled out in narrow jets, similar to those observers have seen in many long GRBs. But the energy was one thousand times lower.

"We have been simulating the explosions from neutron star collisions on computers for years" stated Stephan Rosswog, a professor of astronomy at the International University in Bremen, Germany. "It is exhilarating to finally compare our results to actual data, and I am happy to see that some of our predictions were validated," he added.

The next stage in the study of short bursts is to locate and study a large number of these objects. "We have been studying the long GRBs for many years, and each one produces a new surprise," said Berger. "I can't wait to see what surprises the universe has in store for us with the short GRBs."

In addition to Berger and Piran the international team that identified and researched the afterglow and host galaxy of the short GRB 050724 includes David Murphy and Eric Persson from Carnegie Observatories, Paul Price and Len Cowie from the University of Hawaii, Brad Cenko, Avishay Gal-Yam, Alicia Soderberg, Mansi Kasliwal, Doug Leonard, Brian Cameron, Shri Kulkarni, Dae-Sik Moon, Derek Fox, and Fiona Harrison from Caltech, Dale Frail from the National Radio Astronomy Observatory, Wojtek Krzeminski from Las Campanas Observatory, Brian Lee from the University of Toronto, Kathy Roth from the Gemini Observatory, Brian Schmidt, Joshua Rich, and Bruce Peterson from Mount Stromlo Observatory, and Bryan Penprase from Pomona College.

Related Links
Hebrew University
Swift
Carnegie Observatories
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Integral: Three Years Of Insight Into The Violent Cosmos
Paris (ESA) Oct 18, 2005
Observing the cosmos, full of violent phenomena and extreme energy, has been the task of ESA's Integral gamma-ray observatory since its launch on 17 October 2002. Three years later, the mission is going very well and has recorded a wealth of important discoveries.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.