. 24/7 Space News .
NASA Tests Environmentally Friendly Rocket Fuel

Greg Zilliac, NASA Engineer, seals test chamber for the next test firing.
Moffett Field - Jan 14, 2003
NASA has successfully tested an alternative rocket fuel that may increase operational safety and reduce costs over current solid fuels. The new paraffin-based fuel could eventually be used in Space Shuttle booster rockets.

Two years of collaboration between Stanford University, Palo Alto, Calif., and NASA's Ames Research Center, Moffett Field, Calif., have led to the development of a non-toxic, easily handled fuel made from a substance similar to what is used in common candles.

The by-products of combustion of the new fuel are carbon dioxide and water; unlike conventional rocket fuel that produces aluminum oxide and acidic gasses, such as hydrogen chloride.

"There is great cost in making, handling and transporting traditional solid rocket fuels, but the new paraffin-based fuel is less expensive, non-toxic and non-hazardous," said Greg Zilliac of Ames.

"Because the fuel is very stable and environmentally friendly, a hybrid rocket could be fueled at the launch site rather than at the factory, thereby saving money," he added.

The main goal of the NASA test program is to determine if the promising results of earlier bench-top experiments conducted at Stanford will scale up to the combustion chamber conditions required for space launch operational systems.

"The NASA combustion tests have been very promising and indicate the burn rate for the larger-scale apparatus is as high as that achieved in the small-scale Stanford tests," Zilliac continued. "This new fuel could significantly impact the future of space transportation," he said.

"A hybrid rocket equivalent to the Space Shuttle's solid rockets would be about the same diameter, but would be somewhat longer," said Stanford University Professor Brian Cantwell.

"Hybrid rockets, using the paraffin-based fuel, can be throttled over a wide range, including shut-down and restart. That's one reason why they could be considered as possible replacements for the Shuttle's current solid rocket boosters that cannot be shut off after they are lit," he said.

"One design concept being considered is a new hybrid booster rocket that is able to fly back to the launch site for recharging," he added.

A hybrid rocket uses a liquefied oxidizer that is gasified before being injected into the combustion chamber containing the solid fuel. Upon ignition, a flame develops over the fuel surface causing the solid to evaporate, thereby sustaining the combustion. Because current hybrid fuels, other than paraffin-based fuels, cannot sustain a high combustion rate, they have found only limited application and are not commercially viable for space applications. Tests at Stanford and Ames have shown the new paraffin-based fuel has a burn rate that is three times greater than that of other hybrid fuels.

Scientists are testing the new fuel at the Ames Hybrid Combustion Facility. The first successful test in the series took place on Sept. 24, 2001. The heavy-duty test chamber can accommodate pressures up to 60 atmospheres.

The first phase of the program included approximately 40 runs. A new combustion chamber with sapphire windows will soon be installed to allow researchers to observe the combustion process using optical instruments. Scientists will study the underlying physical processes that produce the fuel's high performance.

NASA engineers will conduct roughly 200 test runs during the lifetime of the project. A maximum of one test will take place per day, each lasting 20 seconds or less.

The concept of a fast-burning, low-cost, paraffin-based fuel was originally conceived by Dr. Arif Karabeyoglu of Stanford, Dr. David Altman, president of Space Propulsion Group Inc., Menlo Park, Calif. and Cantwell. Karabeyoglu developed the theory in his doctoral thesis that was partially supported by Stanford and NASA. He leads the Stanford contribution to the fuel research.

Images and more information is available on the Internet at:

Related Links
Ames Research Center
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Plutonium: Size Does Matter
Los Alamos - Oct 21, 2002
Los Alamos National Laboratory researchers have found a better way to measure plutonium oxide particles in glove boxes where plutonium research is done. The new system will help improve the quality and safety of several key plutonium processes.

Health Effects Of Perchlorate From Spent Rocket
Fuel Amherst - Jul 11, 2002
A University of Massachusetts scientist is part of a panel of experts helping the Environmental Protection Agency (EPA) determine how to deal with tons of spent rocket fuel that has seeped into aquifers in parts of the American Southwest.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.