Subscribe to our free daily newsletters
. 24/7 Space News .

Subscribe to our free daily newsletters

Planets Aplenty In T Tauri Furnaces

Molecular hydrogen emission lines In four T Tauri stars The images and infrared spectral lines of four T Tauri stars demonstrate that they are surrounded by disk of molecular hydrogen. Molecular hydrogen emits light at a characteristic wavelength of 2.1218 microns (0.00008 inches). In the star LkCa 15, the disk is edge-on. The double peak in its spectrum is caused by the Doppler effect. The right-hand peak is produced by light emitted by hydrogen molecules on the side of the disk that is traveling away from Earth so it is shifted slightly to a longer wavelength. The peak on the left is caused by light coming from the other side of the disk, where the molecules are traveling toward the Earth, causing their wavelength to shorten slightly. This allowed the astronomers to determine that the region where the light is being produced is at about the same distance from the star as Saturn is from the Sun.
by David F. Salisbury
for Exploration@Vanderbilt
Nashville - Dec 17, 2002
If David Weintraub and Jeff Bary are right, there may be a lot more planets circling stars like the Sun than current models of star and planet formation predict. The associate professor of astronomy at Vanderbilt and his graduate student are taking a critical look at T Tauri stars. These are stellar adolescents, less than 10 million years old, which are destined to become stars similar to the Sun as they age.

Classical T Tauri stars -- those less than 3 million years old -- are invariably accompanied by a thick disk of dust and gas, which is often called a protoplanetary disk because it is a breeding ground for planet formation.

Most older T Tauri stars show no signs of encircling disks. Because they are not old enough for planets to form, astronomers have concluded that most of these stars must loose their disk material before planetary systems can develop. Weintraub and Bary are pursuing an alternative theory.

They propose that most older T Tauri stars haven't lost their disks at all: The disk material has simply changed into a form that is nearly invisible to Earth-based telescopes. They published a key observation supporting their hypothesis in the September 1 issue of the Astrophysical Journal Letter and the article was highlighted by the editors of Science magazine as particularly noteworthy.

The two researchers currently are preparing to publish additional evidence in support of their hypothesis.

The dense disks of dust and gas surrounding classical T Tauri stars are easily visible because dust glows brightly in the infrared region of the spectrum. Although infrared light is invisible to the naked eye, it is readily detectable with specially equipped telescopes.

The second group of T Tauri stars that are somewhat older -- between three to six billion years -- and show no evidence of disks have been labeled as "naked" or "weak line" T Tauri stars.

Because there is no visible evidence that naked T Tauri stars possess protoplanetary disks. So astronomers have concluded that the material must have been absorbed by the star or blown out into interplanetary space or pulled away by the gravitational attraction of a nearby star in the first few million years.

According to current theories, it takes about 10 million years to form a Jupiter-type planet and even longer to form a planet like Earth. If the models are correct and if most Sun-like stars loose their protoplanetary disks in the T Tauri stage, then very few stars like the Sun are likely to possess planetary systems.

This picture doesn't sit well with Weintraub, however.

"Approaching it from a planetary evolution point of view, I have not been comfortable with some of the underlying assumptions," he says.

Current models do not take the evolution of protoplanetary disks into account. Over time, the disk material should begin agglomerating into solid objects called planetesimals.

As the planetesimals grow, an increasing amount of the mass in the disk becomes trapped inside these solid objects where it cannot emit light directly into space. The constituents of the disk that astronomers knew how to detect -- small grains of dust and carbon monoxide molecules -- should quickly disappear during the first steps of planet building. "Rather than the disk material dissipating," says Bary, "It may simply become invisible to our instruments."

So Weintraub and Bary began searching for ways to determine if such "invisible protoplanetary disks" actually exist.

They decided that their best bet was to search for evidence of molecular hydrogen, the main constituent of the protoplanetary disk, which should persist much longer than the dust grains and carbon monoxide.

Unfortunately, molecular hydrogen is notoriously difficult to stimulate into emitting light: It must be heated to a fairly high temperature before it will give off infrared light.

The fact that T Tauri stars are also strong X-ray sources gave them an idea. Perhaps the X-rays coming from the star could act as an energy source capable of stimulating the molecular hydrogen.

To produce enough light to be seen from earth, however, the molecular hydrogen could not be mixed with dust and had to be at an adequate density. Studying various theories of planet formation, they determined that the proper conditions should hold in a "flare region" near the outer edge of the protoplanetary disk.

The next step was to get observation time on a big telescope to put their out-of-the-mainstream theory to the test. After repeated rejections, they were finally allocated viewing time on the four-meter telescope at the National Optical Astronomical Observatory in Kitt Peak, Arizona.

When they finally took control of the telescope and pointed it toward one of their prime targets -- a naked, apparently diskless T Tauri star named DoAr21 -- they found the faint signal for which they were searching.

"We found evidence for hydrogen molecules where no hydrogen molecules were thought to exist," says Weintraub.

When Bary calculated the amount of hydrogen involved in producing this signal, however, he came up with about a billionth of the mass of the Sun, not even enough to make the Moon.

As they argued in their Astrophysical Journal Letter article, they believe that they have detected only the proverbial tip of the iceberg, since most of the hydrogen gas will not radiate in the infrared.

But the calculation raises the question of whether the molecular hydrogen that they detected is part of a complete protoplanetary disk or just its shadowy remains.

Although they do not completely answer the question, additional observations that the two are readying for publication provides additional support for their contention that DoAr21 contains a sizeable but invisible disk.

The new observations are the detection of the same molecular hydrogen emission line around three classical T Tauri stars with visible protoplanetary disks. The strength of the hydrogen emission lines in the three is comparable to that measured at DoAr21.

In addition, they have calculated the ratio between the mass of hydrogen molecules that are producing the infrared emissions and the mass of the entire disk in the three systems. For all three they calculate that the ratio is about one in 100 million.

"If the ratio between the amount of hydrogen emitting in the infrared and the total amount of hydrogen in the disk is about the same in the two types of T Tauri stars, which is not an unreasonable assumption, this suggests the naked T Tauri star has a sizable but hard-to-detect disk," says Bary.

Weintraub and Bary admit that they have more work to do to in order to convince their colleagues to adopt their theory. They have been allocated time on a larger telescope, the eight-meter Gemini South in Chile and plan to survey 50 more naked T Tauri stars to see how many of them produce the same molecular hydrogen emissions.

If a large number of them do, it will indicate that they have discovered a general mechanism involved in the planetary formation process. They also intend to search for a second, fainter hydrogen emission line. If they find it, it will provide additional insights into the excitation process.

Currently, the number of naked T Tauri stars that have been discovered is much greater than the number of known classical T Tauri stars. If Weintraub and Bary are proven right, however, and a significant percentage of the naked T Tauri stars develop planetary systems, it means that solar systems similar to our own are a common sight in the universe.

Related Links
Exploration at Vanderbilt
Search SpaceDaily
Subscribe To SpaceDaily Express

Small Planet Spotted About Epsilon Eridani
Rochester - Oct 25, 2002
A new extrasolar planet has been discovered using a new technique that will allow astronomers to detect planets no other current method can. Planets around other stars have been previously detected only by the effect they have on their parent star, limiting the observations to large, Jupiter-like planets and those in very tight orbits.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.