. 24/7 Space News .

A NASA Hubble Space Telescope false-color, visible-light picture of one side of the edge-on dust disk around the star Beta Pictoris. Knots in the disk (marked A,B,C,D) are interpreted as rings of dust, seen edge-on.
Hubble Spys Giant Elliptical Ring System In Beta Pictoris
Washington - January 17, 2000 - A proto planetary disk around Beta Pictoris, 78 light-years away, is dynamically "ringing like a bell," according to astronomers investigating NASA Hubble Space Telescope images. The "clapper" is the gravitational wallop of a star that passed near Beta Pictoris some 100,000 years ago.

The surprising findings, presented at the 195th Meeting of the American Astronomical Society, show that a close encounter with a neighboring star can severely disrupt the evolution and appearance of thin disks, which are the nurseries of planetary systems.

Similar fly-bys of our solar system long ago may have reshuffled the comets that now populate our Oort cloud and Kuiper belt.

Discovered in 1983, the dust disk around the nearby star Beta Pictoris -- long suspected to harbor a planetary system -- has puzzled astronomers because it contains more dust grains than any other comparable system. Also, the dust spreads over a huge 65-billion-mile-diameter area. Yet, one side of the disk is 20 percent longer and thinner than the other side.

In these latest findings, Hubble astronomers carefully studied the appearance of the disk using 10 years of archival data from the Hubble Space Telescope and from ground-based telescopes in Hawaii and Chile.

Hidden within the densest part of the disk are clumps of dust that are present only on the long, thin side of the disk. Because the disk is tilted edge-on to our line-of-sight, the astronomers inferred that the clumps might represent rings if the disk was viewed face-on.

They hypothesized that these rings must be highly elliptical if they appear only on one side of the disk, and this could arise if another massive object, like a passing star, recently disturbed the entire system.


A still frame from a computer simulation, which shows a circumstellar dust disk highly perturbed by the gravitational pull of a bypassing star. The gray solid area represents the initial shape and size of the undisturbed disk. In the simulation, the gravity of the passing star rearranges the orbit of each particle, setting up an elliptical ring system that may have survived for the last 100,000 years since the impact occurred. Credit: Simulation courtesy: John Larwood (Queen Mary and Westfield College, London, United Kingdom)
To test their ideas the researchers asked theorist John Larwood of Queen Mary and Westfield College (London, United Kingdom) to create a computer simulation of a quiescent disk made of one million test particles orbiting a virtual star.

The simulation explored what would happen if another star zipped by it in a near-collision trajectory. In the simulation, the gravity of the passing star rearranged the orbit of each particle, setting up an elliptical ring system 100,000 years after the almost catastrophic event. The model also reproduced the 20 percent asymmetry in the disk, which has mystified astronomers since the Beta Pictoris disk was first seen 16 years ago.

The astronomers are continuing their detective work, searching for the intruder star among 186 suspects near Beta Pictoris. Their simulations predict it might be only a fraction of the mass of our Sun (a class called an M-dwarf star). The present results will be published in a future issue of Astrophysical Journal Letters.

Photo and Research Credits: The Hubble research team, led by Paul Kalas (Space Telescope Science Institute, Baltimore, Md.), consists of John Larwood (Queen Mary and Westfield College, London, United Kingdom), Bradford Smith (University of Hawaii, Institute for Astronomy, Honolulu, Hawaii), and Alfred Schultz (Space Telescope Science Institute).

  • Latest Hubble Images Of Beta Pictoris
  • Previous Hubble Images Of Beta Pictoris (Jan 1998)

    EXO WORLDS
    Is Sol A Rare System
     Columbus - January 13, 2000 - An Ohio State University astronomer is helping to answer a question mankind has asked since Copernicus first proclaimed that Earth orbited the sun: could many other stars have planetary systems like ours?

    Additional Links

  • Terrestrial Planet Finder Project
  • Space interferometry Project
  • Center for Astronomical Adaptive Optics Deep Space 3
  • ExtraSolar Research Corporation
  • Extrasolar Planets Encyclopaedia
  • Web Guide to ExtraSolar Planets




    Thanks for being here;
    We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

    With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

    Our news coverage takes time and effort to publish 365 days a year.

    If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
    SpaceDaily Contributor
    $5 Billed Once


    credit card or paypal
    SpaceDaily Monthly Supporter
    $5 Billed Monthly


    paypal only














  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.