. 24/7 Space News .
Adsorbent Materials For The Storage Of Hydrogen

Pamplona, Spain (SPX) Jun 28, 2005
A research team from the Public University of Navarra has started a study of the design and development of absorbent materials that enable the storage of hydrogen, a clean fuel that can be used as an alternative to those derived from fossil fuels, such as petrol and diesel.

The storage of this element is, in fact, a key process in the change over from internal combustion engines � contaminating and not very efficient, to cars with hydrogen fuel cells.

The project, entitled, Development of materials for storage of hydrogen by means of physical adsorption.

At present, hydrogen production "is not a problem". For some years now, hydrogen has been obtained by means of catalytic reforming or by the electrolysis of water.

However, the question hanging over the use of hydrogen as a fuel is its generation or storage in the quantities required for a means of transport and without it being dangerous � as we are dealing with a highly inflammable gas.

Under normal conditions hydrogen is in a gaseous state and thus has to be kept under high pressure or, if we wish to reduce the pressure, the storage temperature has to be lowered. These two circumstances give rise to technological difficulties, apart from the added safety ones.

There are various ways to store hydrogen: pressurised, liquid, absorbed into metals (as hydrides) and physiadsorbed in suitable materials. This last method, involving the "physical adsorption onto porous materials", is what is being developed in this current research project, the end of which is projected for next year.

In concrete, the study is being carried out employing nanoporous materials the pore size of which is in the range of 0 to 10-6 metres.

The mentioned research team has commenced work on three families of materials: activated carbons, zeolites and stacked clays. These materials fulfil four requisites: they have mechanical resistance and are safe, apart from being light and cheap.

Storage based on physiadsorbtion provides a potentially higher energy efficiency than the rest of the mentioned storage options, given that the hydrogen is retained at a low temperature and 100% of the hydrogen adsorbed can be recovered.

The low boiling point of hydrogen (-253�C) makes it necessary to employ temperatures pf about -196�C in order to attain sufficient amount of adsorbed hydrogen. The freeing of the physiadsorbed hydrogen can be, moreover, a rapid process and can be carried out easily with small changes of pressure and/or temperature.

Related Links
Public University of Navarra
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

'Apollo Program' For Hydrogen Energy Needed, Stanford Researcher Says
Stanford CA (SPX) Jun 27, 2005
What if all the vehicles now on the road in the United States were suddenly powered by hydrogen fuel cells? Stanford researchers say in a June 24 article in the journal Science that such a conversion would improve air quality, health and climate--especially if wind were used to generate the electricity needed to split water and make hydrogen in a pollutionless process.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.