. 24/7 Space News .
Navigating Your Way Through Materials At The Nano Level

This panel compares the performance of the electron microscope without the aberration correction (left) and with the correction. More images and data
Yorktown Heights - August 8, 2002
IBM and Nion Co. researchers have developed innovative technology to peer deep inside materials and view atoms interacting in different environments at a resolution never before possible. With computer-chip features shrinking to atomic scales, this breakthrough addresses scientists' urgent need to see more clearly the details of materials used in manufacturing semiconductors.

As reported in the August 8 issue of the journal Nature, the new technique significantly extends the capabilities of the electron microscope -- a scientific instrument that uses magnetic lenses to focus electrons into very small beams to look at small, atomic-scale details in thin slices of materials.

"We can't fix what we can't see," said Dr. Philip Batson, the lead scientist on the project at IBM Research. "As the dimensions of computer chips shrink, scientists need new tools to explore the structures and properties of materials used in these chips. This breakthrough improves our ability to see and thoroughly explore properties of electronic materials."

For the past 50 years, electron optics engineers have sought to improve the precision of electron microscopes by counteracting the image-blurring effects of lens imperfections, or "aberrations."

The largest imperfection, "spherical aberration," cannot be fixed in a single lens. To fix the problem, the IBM and Nion scientists combined seven new sets of magnetic lenses with modern computers to actively correct the aberration in real-time.

After this correction, the microscope can make an electron beam that is only 75 thousandths of a nanometer (3 billionths of an inch), which is smaller than a single hydrogen atom. This is the smallest electron beam produced in an electron microscope to date.

Spying on Silicon for Smaller, Faster Computer Chips

Before the correction, the electron microscope yielded tantalizing but incomplete information about the atomic structure of important defects -- atomic level mistakes such as missing or extra atoms -- in semiconductor materials. Using this correction technique, scientists now can see those defects, and if necessary, find ways to fix them.

For example, by examining the interaction of silicon (a semiconductor) with silicon oxide (an insulator), scientists can look at how the silicon and oxygen atoms bond to each other and determine the quality of the insulator. If the insulator has any defects, scientists can suggest ways to fix them, such as setting the right conditions to optimize the growth of silicon and silicon oxide materials.

The breakthrough could also help scientists improve the properties of silicon through a better understanding of how the atoms inside of materials interact in certain environmental conditions.

Watching how atoms assemble, move around and interact with other atoms is fundamental to understanding the properties of materials and may lead to a better understanding of how to control environmental conditions so components of future computer chips could self-assemble.

The authors of the Nature report, entitled "Sub-angstrom Resolution Using Aberration Corrected Electron Optics," are Philip E. Batson of IBM's T.J. Watson Research Laboratory in Yorktown Heights, N.Y; and Niklas Dellby and Ondrej L. Krivanek of Nion Co. in Kirkland, Washington.

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Lining Them All Up In Quantum Land
Madison - Jul 26, 2002
Material scientists at the University of Wisconsin at Madison have built a semiconductor based device that can trap individual electrons and line them up, an advance that could bring quantum computing out of the gee-whiz world of scientific novelty and into the practical realm.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.